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MAIN COSMOLOGICAL PROBES

Young universe (380,000 yrs after big bang)!

[Gravity waves] !

Cosmic Microwave Background (CMB)!
!

‘Recent’ universe (billions yrs after big bang)!

Large-scale structure (LSS)!

21cm, Lyα, CMB lensing, galaxy 
clustering, weak lensing!

Supernovae

All observations can be described with 
LCDM cosmological model  
(start with inflation, then expand with CDM 
and cosmological constant dark energy)

Dana Berry / SkyWorks Digital Inc. and the SDSS collaboration



MAIN COSMOLOGICAL PROBES

Constraints on 6-parameter 
LCDM model:!

CMB is most powerful!

24 Florian Beutler et al.
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Figure 17. Comparison between Planck (Ade et al. 2013a),
Planck SZ clusters (Ade et al. 2013b), CFHTLenS lens-
ing (Kilbinger et al. 2013) and our results in the σ8-Ωm plane.
When using only the fσ8 constraint from our analysis (orange
contours), there is a degeneracy, similar to the cluster and lensing
datasets. The geometric information can break this degeneracy.
While the AP effect is only depending on Ωm, our DV /rs con-
straint does require calibration of the sound horizon. We show
the results, where we fix the sound horizon to the value of Planck
(blue contours) and the value reported by WMAP9 (green con-
tours). The results are summarised in Table 3. To turn our fσ8

constraint into a constraint on σ8 we assume GR (γ = 0.55) and
ΛCDM similar to the Planck contours (brown contours). The ten-
sion in σ8 between our measurement and Planck is directly re-
lated to the large γ we find in our ΛCDM consistency check in
section 9.1.

There are many ways in which one could reduce the
predicted structure growth of Planck, e.g. massive neutri-
nos, w < −1 or Ωk > 0. We should also mention that
there are several other datasets in tension with the Planck
inferred structure growth. Figure 17 shows our result in
the σ8-Ωm plane compared to Planck (Ade et al. 2013a),
Planck SZ clusters (Ade et al. 2013b) and CHFTLS lens-
ing (Kilbinger et al. 2013). Using the CMASS fσ8 measure-
ment alone, there is a degeneracy between σ8 and Ωm similar
to the lensing and cluster constraints. This degeneracy can
be broken when including the geometric information (FAP

and DV /rs). We can see that Planck predicts a large σ8 in
tension with the other datasets included in this comparison
(see also Mandelbaum et al. 2013). The large normalisation
σ8 of Planck directly leads to the large γ we found in our
consistency check above. Therefore Figure 17 shows that we
can relax the tension between our measurement and GR by
using the normalisation from one of the other datasets shown
in this Figure.

9.2 Constraining σ8 with CMASS-DR11

Assuming ΛCDM and GR in the form Ω0.55
m (z) we can use

our constraint on the growth of structure (fσ8) and the
AP effect (FAP) to set the constraint σ8 = 0.731 ± 0.052
(cyan contours in Figure 17). Our dataset is therefore one
of the few low redshift datasets, which is powerful enough
to constrain σ8 independently. We can also get a fairly weak
constraint on the matter density of Ωm = 0.33+0.15

−0.12.
Additionally we can include the BAO information

(DV /rs), where we however have to fix the sound hori-
zon size rs. In Figure 17 we show the constraint us-
ing the sound horizon of Planck (blue contours) and
WMAP9 (green contours). We use the sound horizon in co-
moving units rPlanck

s (zd) = 98.79Mpc/h and rWMAP9
s (zd) =

102.06Mpc/h, which includes information about the Hubble
constant. Our constraint on DV /rs together with the sound
horizon from the CMB allows tight constraints on Ωm, while
the constraint on σ8 does not improve significantly (see Ta-
ble 3 for details).

10 CONCLUSION

This paper analyses the BOSS CMASS-DR11 dataset
employing a power spectrum estimator suggested
by Yamamoto et al. (2006), which allows us to mea-
sure the power spectrum monopole and quadrupole in a
wide-angle survey like BOSS. We use Quick-Particle-Mesh
(QPM) simulations to produce 999 mock catalogues to
derive a covariance matrix. The covariance matrix shows
little correlation between the different bins in the power
spectrum, which is very different to similar studies using
the correlation function.

Our model of the multipole power spectrum accounts
for nonlinear evolution on the basis of perturbation theory.
We adopt the modelling of non-linear redshift-space distor-
tion by Taruya, Nishimichi & Saito (2010) and extend this
approach to include the local and non-local galaxy bias with
its stochasticity.

The parameter fits using the fitting range k = 0.01 -
0.20h/Mpc are considered the main results of this paper.
We provide a multivariate Gaussian likelihood to use our
results for cosmological constraints.

Our analysis has been performed blind, meaning that
all systematics checks and the set-up of the fitting procedure
has been done on mock catalogues and only at the last stage
did we analyse the actual CMASS-DR11 power spectrum
measurement. The results of our analysis can be summarised
in the following five points:

(i) We provide a set of equations (eq. 32, 33, 36, 37),
which allows us to incorporate the window function and the
integral constraint into our analysis in a self-consistent man-
ner, without using any simplifying assumptions and without
the need to split the survey into sub-regions.

(ii) Our study of systematic uncertainties lead to a max-
imum wavenumber of kmax = 0.20h/Mpc for our analysis,
where the total error of f(zeff)σ8(zeff) is minimised. Our fi-
nal systematic uncertainty for f(zeff)σ8(zeff) is 3.1% when
using the fitting range k = 0.01 - 0.20h/Mpc. The geometric
parameters α∥ and α⊥ (DV /rs and FAP) do not show any
significant systematic uncertainties.

c⃝ 2013 RAS, MNRAS 000, 1–??

Beutler et al 2013
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MAIN COSMOLOGICAL PROBES

Constraints on 6-parameter 
LCDM model:!

CMB is most powerful!

Free neutrino mass Σmν!

Constraints degrade 
because Σmν and σ8 
degenerate in CMB!

LSS helps

DM fraction of total energy budget in the universe

M
ag

ni
tu

de
 o

f fl
uc

tu
at

io
ns

10 Florian Beutler et al.

mΩ
0.25 0.3 0.35 0.4 0.45 0.5

8
σ

0.65

0.7

0.75

0.8

0.85

)ν mΣPlanck (free 
)ν mΣPlanck+CMBlensing (free 

CFHTLenS
Kilbinger et al. (2013)
Planck+Beutler2013
Planck+Beutler2013+CFHTLenS

 [eV]ν mΣ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

8
σ

0.65

0.7

0.75

0.8

0.85

)ν mΣPlanck (free 
Planck+Beutler2013
Planck+Beutler2013+CFHTLenS

mΩ
0.25 0.3 0.35 0.4 0.45 0.5

8
σ

0.65

0.7

0.75

0.8

0.85

)ν mΣ (free LPlanck-A
)ν mΣ+CMBlensing (free LPlanck-A

CFHTLenS
Kilbinger et al. (2013)

+Beutler2013LPlanck-A
+Beutler2013+CFHTLenSLPlanck-A

 [eV]ν mΣ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

8
σ

0.65

0.7

0.75

0.8

0.85

)ν mΣ (free LPlanck-A
+Beutler2013LPlanck-A
+Beutler2013+CFHTLenSLPlanck-A

Figure 7. Two-dimensional likelihood for Ωm-σ8 (left) and
∑

mν -σ8 (right) when combining Planck MCMC chains within ΛCDM and
free

∑
mν with different low redshift growth of structure constraints. We show the main Planck results in the two plots on the top.

The two bottom plots show the results where we used a Planck MCMC chain with the AL-lensing signal marginalised out. The orange
contours show Planck combined with the DV /rs, FAP and fσ8 constraints of Beutler et al. (2013). The green contours additionally
include CFHTLenS. The blue contours show Planck and Planck−AL combined with CMB lensing from the 4-point function (top left
and bottom left, respectively). The results are summarised in Table 2.

Planck−AL since AL is the parameter used to mimic the
lensing effect on the CMB temperature power spectrum
(smoothing of the higher order peaks). One must keep in
mind, however, that AL is not a physical parameter, but
only a way to remove the lensing effect from the CMB power
spectrum data. To avoid confusion, from now on we will des-
ignate the lensing contribution to the temperature power
spectrum as AL-lensing and the lensing signal in the 4-point
function as CMB lensing (or CMBlensing in Table 2). The

WMAP dataset is not sensitive to gravitational lensing, be-
cause this effect is only significant at large multipoles.

The Planck collaboration reports some anomalies with
respect to the AL-lensing contribution. When including the
parameter AL in the fit, Planck reports AL = 1.29 ± 0.13
(Planck+WP) (Ade et al. 2013a), which is 2σ from the ex-
pected value of 1, while the lensing effect in the 4-point func-
tion produces Aφφ

L = 0.99 ± 0.05 (Ade et al. 2013c). Thus
the AL-lensing contribution is in (small) tension with the

c⃝ 0000 RAS, MNRAS 000, 000–000

Beutler et al 2013



MAIN COSMOLOGICAL PROBES

Constraints on 6-parameter 
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CMB is most powerful!

Free neutrino mass Σmν!

Constraints degrade 
because Σmν and σ8 
degenerate in CMB!

LSS helps!
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Figure 7. Two-dimensional likelihood for Ωm-σ8 (left) and
∑

mν -σ8 (right) when combining Planck MCMC chains within ΛCDM and
free

∑
mν with different low redshift growth of structure constraints. We show the main Planck results in the two plots on the top.

The two bottom plots show the results where we used a Planck MCMC chain with the AL-lensing signal marginalised out. The orange
contours show Planck combined with the DV /rs, FAP and fσ8 constraints of Beutler et al. (2013). The green contours additionally
include CFHTLenS. The blue contours show Planck and Planck−AL combined with CMB lensing from the 4-point function (top left
and bottom left, respectively). The results are summarised in Table 2.

Planck−AL since AL is the parameter used to mimic the
lensing effect on the CMB temperature power spectrum
(smoothing of the higher order peaks). One must keep in
mind, however, that AL is not a physical parameter, but
only a way to remove the lensing effect from the CMB power
spectrum data. To avoid confusion, from now on we will des-
ignate the lensing contribution to the temperature power
spectrum as AL-lensing and the lensing signal in the 4-point
function as CMB lensing (or CMBlensing in Table 2). The

WMAP dataset is not sensitive to gravitational lensing, be-
cause this effect is only significant at large multipoles.

The Planck collaboration reports some anomalies with
respect to the AL-lensing contribution. When including the
parameter AL in the fit, Planck reports AL = 1.29 ± 0.13
(Planck+WP) (Ade et al. 2013a), which is 2σ from the ex-
pected value of 1, while the lensing effect in the 4-point func-
tion produces Aφφ

L = 0.99 ± 0.05 (Ade et al. 2013c). Thus
the AL-lensing contribution is in (small) tension with the

c⃝ 0000 RAS, MNRAS 000, 000–000
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MAIN COSMOLOGICAL PROBES

Constraints on 6-parameter 
LCDM model:!

CMB is most powerful!

Free neutrino mass Σmν!

Constraints degrade 
because Σmν and σ8 
degenerate in CMB!

LSS helpful!

Other model extensions 
(curvature, time-varying 
dark energy, mod. grav. etc)!

LSS crucial

Beutler et al 2013

Dana Berry / SkyWorks Digital Inc. and the SDSS collaboration

Generally, should not just compare constraining power: LSS checks cosmological 
model as a whole (low z vs high z from CMB)



STATISTICAL!

PROPERTIES!

OF LSS



@⌘� +r[(1 + �)v)] = 0
Equations of motion for DM are non-linear, containing products of Gaussian first-
order perturbations (e.g. continuity equation                                          )!

➟ DM density is not Gaussian (even in absence of primordial non-Gaussianity):

kmax ~ 0.15 h/Mpc, z = 0.55, 20483 DM ptcles

DARK MATTER DENSITY



NON-GAUSSIANITY FROM GRAVITY

Another complication:!

Distribution of dark matter is different from that of galaxies           ➟  “Galaxy bias”!

!
!



NON-GAUSSIANITY FROM GRAVITY

Another complication:!

Distribution of dark matter is different from that of galaxies           ➟  “Galaxy bias”!

!
!

night 
human 

population 
density

Adopted from Tobias Baldauf



NON-GAUSSIANITY FROM GRAVITY

Another complication:!

Distribution of dark matter is different from that of galaxies           ➟  “Galaxy bias”!

!
!

night 
human 

population 
density

Adopted from Tobias Baldauf



Galaxies are biased tracer of DM!

Bias relation has additional non-linearities!

➟ pdf of galaxy density is even more non-Gaussian than that for DM:

kmax ~ 0.15 h/Mpc, z = 0.55, halos with b1~2 and mass 1-4 x 1013 Msolar/h

GALAXY DENSITY

�g(x) ⇠ b1�m(x) + b2�
2
m(x) + bs2s

2
m(x)



QUANTIFYING!
THE PDF



Gaussian field is completely specified by 
its power spectrum Pδ  
(2-point correlation function in Fourier space)  
 
 
 
 
 

Primary diagnostic for non-Gaussianity 
is the bispectrum Bδ  
(3-point correlation function in Fourier space:  
given 2 over-densities, specifies probability of 
having a third overdensity)!

!
!
!
!
!

POWER AND BISPECTRUM

h�(k1)�(k2)i = (2⇡)3�D(k1 + k2)P�(k1)

bispectrum drawn on space of 
triangle configurations

= (2⇡)3�D(k1 + k2 + k3)B�(k1, k2, k3)

h�(k1)�(k2)�(k3)i

2.4 Large-scale dark matter perturbations
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Fig. 5.— The reconstructed matter power spectrum: the stars show the power spectrum from combining ACT and WMAP data (top
panel). The solid and dashed lines show the nonlinear and linear power spectra respectively from the best-fit ACT ⇤CDM model with
spectral index of ns = 0.96 computed using CAMB and HALOFIT (Smith et al. 2003). The data points between 0.02 < k < 0.19 Mpc�1

show the SDSS DR7 LRG sample, and have been deconvolved from their window functions, with a bias factor of 1.18 applied to the data.
This has been rescaled from the Reid et al. (2010) value of 1.3, as we are explicitly using the Hubble constant measurement from Riess et al.
(2011) to make a change of units from h�1Mpc to Mpc. The constraints from CMB lensing (Das et al. 2011), from cluster measurements
from ACT (Sehgal et al. 2011), CCCP (Vikhlinin et al. 2009) and BCG halos (Tinker et al. 2011), and the power spectrum constraints
from measurements of the Lyman–↵ forest (McDonald et al. 2006) are indicated. The CCCP and BCG masses are converted to solar mass
units by multiplying them by the best-fit value of the Hubble constant, h = 0.738 from Riess et al. (2011). The bottom panel shows the
same data plotted on axes where we relate the power spectrum to a mass variance, �M/M, and illustrates how the range in wavenumber k
(measured in Mpc�1) corresponds to range in mass scale of over 10 orders of magnitude. Note that large masses correspond to large scales
and hence small values of k. This highlights the consistency of power spectrum measurements by an array of cosmological probes over a
large range of scales.

(Hlozek et al. 2011)

~ keq

Figure 2.8: Reconstructed matter power spectrum today, adapted from Fig. 5
in [117]. The data points are from various large-scale structure and CMB ex-
periments. The dashed line represents the linear power spectrum which follows
approximately (2.120). The solid line contains non-linear corrections which are
important on small scales.

The integral can be computed numerically using the Friedmann equation

✓
H(a)

H0

◆2

= ⌦ra
�4 + ⌦ma�3 + ⌦⇤ + ⌦ka

�2, (2.122)

where ⌦X are the density parameters today (when a = 1). Note that we only

consider the fastest growing mode here and in the following.

2.4.4 Higher-order perturbation theory

The late-time dark matter distribution has a non-trivial bispectrum even in the

absence of primordial non-Gaussianity due to non-linearities in the equations of

59

Hlozek et al. 2012



MOTIVATION FOR MEASURING 
BISPECTRUM

Early universe: Constrain primordial non-Gaussianity!

CMB close to cosmic variance limit, so need LSS !

       : Bispectrum complementary to P(k) and less affected by low-k systematics!

      : No signal in P(k) → need bispectrum!

e.g. SPHEREX (proposed satellite)

f loc

NL

f eq
NL

Late universe: Break parameter degeneracies, e.g. between b1 and σ8:!

Power spectrum:                       !

Bispectrum:  !

Lots of upcoming LSS experiments that could benefit, e.g. eBOSS, DESI, EUCLID, 
WFIRST, LSST, …

Phh / b21�
2
8

Bhhh /⇠ b31�
4
8+ ⇠ b21b2�

4
8 + · · ·

Fry 1994!
Verde et al. 1997-2002!

Scoccimarro et al. 1998!
Sefusatti et al. 2006!

Gil-Marin et al. 2014

Doré et al. 2014
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Fry 1994!
Verde et al. 1997-2002!
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Gil-Marin et al. 2014

But: Beyond 2-point plagued by increased complexity of analysis 
(covariances, window function, fiber collisions, computational cost ~ N6;  
non-linear DM, bias, redshift-space distortions, galaxy-halo connection, …)

Doré et al. 2014



SIMPLE BISPECTRUM 
ESTIMATORS



Non-linear DM density (2nd order SPT)!
!
!
!
!

!
!
!

THEORY DM BISPECTRUM

�
m

(x) = �
0
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δm: nonlinear DM density  
δ0: linear DM density  
     : linear displacement  
s0: linear tidal tensor

⌘ � ik

k2
�0(k) 0

where



Non-linear halo bias!
!
!
!
!

!
!
!

THEORY HALO BISPECTRUM

δm: nonlinear DM density  
δh: halo density  
sm: DM tidal tensor

�h(x) = b1�m(x) + b2
⇥
�2m(x)� h�2m(x)i

⇤
+

2

3
bs2

⇥
s2m(x)� hs2m(x)i
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) h�h(k1)�h(k2)�h(k3)i

⇠ 2P lin
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mm(k2)
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b31F2(k1,k2) + b21b2 +

2

3
b21bs2P2(k̂1 · k̂2)

�
+ 2 perms



Non-linear halo bias!
!
!
!
!

!
!
!

THEORY HALO BISPECTRUM

δm: nonlinear DM density  
δh: halo density  
sm: DM tidal tensor

�h(x) = b1�m(x) + b2
⇥
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�
+ 2 perms

Decompose in Legendre polys!

!
!
!
!
!
!
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Pl with l = 0, 1, 2
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BISPECTRUM ESTIMATION

Goal: Given DM/halo density δ, estimate coefficients of all bispectrum contributions!
➟ these depend on bias and cosmological parameters that we aim to extract!

Method: Maximum likelihood estimators for the coefficient of contribution Bcontri  

 

 

 

 

Example:  Bcontri = P(k1)P(k2)   
 
 
 
                                            "

!
!
!

ˆ

coe↵(Bcontri|�) /
Z

k,q
Bcontri

(q,k� q,�k)| {z }
theory template

�(q)�(k� q)�(�k)

P�(q)P�(|k� q|)P�(k)| {z }
inv.�varianceweighted data

MS, Baldauf, Seljak, 1411.6595 

=              = cross-spectrum of δ2(x) and δ!

) ˆ

coe↵ /
Z

dk
k2

P (k)
ˆP�2,�(k)

0h�2|�i0

P̂�2,�(k) ⇠
X

k,|k|=k

[�2](k)�(�k)

relies on separability of!
LSS bispectrum

http://arxiv.org/abs/1411.6595
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II. QUADRATIC FIELDS AND BISPECTRUM DECOMPOSITION

A. Quadratic fields

As will be shown in Section III, maximum-likelihood bispectrum estimators for bias parameters can be cast in
form of cross-spectra of the density field with three fields that are quadratic in the real-space density, with di↵erent
dependencies on the cosine µ between the Fourier space wavevectors q and k � q,

µ ⌘ q · (k � q)

q|k � q| . (1)

Explicitly, these three quadratic fields are:

• The squared density �2(x), which can be written as a convolution in Fourier space,

�2(x) =
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eikx

Z
d3q
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P
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where P
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(µ) = 1 is the Legendre polynomial for l = 0.2

• The shift-term
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eikx
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d3q
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(q, |k � q|)P
1

(µ)�(q)�(k � q), (3)

which depends on the l = 1 Legendre polynomial P
1

(µ) = µ and is obtained by contracting the density gradient
r� with the displacement field

 (k) = � ik

k2

�(k). (4)

The symmetric kernel F 1

2

in Eq. (3) is defined as

F 1
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• The tidal term3

s2(x) ⌘ 3

2
sij(x)sij(x) =
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d3k

(2⇡)3
eikx
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d3q

(2⇡)3
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(µ)�(q)�(k � q), (6)

which is defined by contracting the tidal tensor

sij(k) =

✓
kikj

k2

� 1

3
�
(K)

ij

◆
�(k) (7)

with itself. �
(K)

ij denotes the Kronecker delta. The corresponding convolution kernel in Eq. (6) is given by the
l = 2 Legendre polynomial

P
2

(µ) =
3

2

✓
µ2 � 1

3

◆
. (8)

While these three quadratic fields will be derived more rigorously below, some intuition for their appearance can
be gained as follows. In standard perturbation theory (see [31] for a review) the dark matter density is expanded in
powers of the linear perturbation �

0

. In real space, truncating at second order, this can be written as (e.g. [30, 32, 33])
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2 Pl(µ) with l 2 {0, 1, 2} always denotes Legendre polynomials in this paper and should not be confused with power spectra P (k).
3 An overall factor of 3/2 is absorbed compared to e.g. [30], i.e. s

2

here
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2

s
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• nonlinear DM tidal term!
• tidal tensor bias bs2
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VI. EXTENSION TO PRIMORDIAL NON-GAUSSIANITY

So far we have assumed Gaussian initial conditions. Multiple-field inflation models can generate local primordial
non-Gaussianity that induces an additional contribution to the matter-matter-matter bispectrum of the local form

Bloc

mmm

(k
1

, k
2

, k
3

) = 2f loc

NL


M(k

3

)

M(k
1

)M(k
2

)
P

mm

(k
1

)P
mm

(k
2

) + 2 perms

�
, (82)

where M(k) = M(k, z) is the linear Poisson conversion factor between the primordial potential � and the late-time
matter density at redshift z,

M(k, z) ⌘ 2

3

k2T (k)D(z)

⌦
m

H2

0

, (83)

so that �lin

m

(k, z) = M(k, z)�(k). Here, T (k) is the linear transfer function normalized to T (k) = 1 on large scales,
and the linear growth factor D(z) for ⌦

rad

= 0 is normalized to D(z) = 1/(1 + z) during matter domination. Note
that M(k) / k2 for k ⌧ k

eq

and M(k) / k0 for k � k
eq

. The bispectrum (82) is maximal in the squeezed limit
(e.g. k

1

⌧ k
2

⇡ k
3

).
Plugging the bispectrum (82) into Eq. (36), we get
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=
24⇡L3

N
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Z
dk

k2M2(k)

P
mm

(k)
P̂

[

�
m

M ]
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where we defined the quadratic field


�
m

M

�
2

(k) ⌘
Z

d3q

(2⇡)3
�
m

(q)

M(q)

�
m

(k � q)

M(|k � q|) (85)

and the filtered density

�
m

M
(k) ⌘ �

m

(k)

M(k)
. (86)

At leading order, this equals the primordial potential � reconstructed from the DM density �
m

. The cross-spectrum
in Eq. (84) then probes the cross-spectrum of this reconstructed � with �2(x), which corresponds to the mechanism
that generates primordial non-Gaussianity of the local kind (adding f

NL

�2(x) to �(x)).
The cross-spectrum appearing in Eq. (84) could be used to estimate f loc

NL

if the dark matter density was directly
observable. The extension to observable halo densities is left for future work. It would also be straightforward to
extend the cross-spectra to other separable types of primordial non-Gaussianity generated by other inflation models
(e.g. equilateral or orthogonal).

VII. CONCLUSIONS

In this paper we explore methods to probe large-scale structure bispectrum parameters in a nearly optimal way.
The tree level bispectrum receives contributions from gravity at second order, which can be Legendre decomposed
into the squared density �2(x), the shift term � i(x)@i�(x) and the tidal term s2(x) = 3

2

sij(x)sij(x). When applied
to galaxies or halos the gravity term is multiplied by the appropriate linear bias b

1

factor (e.g. b3

1

when investigating
the halo bispectrum). In addition, nonlinear biasing can introduce two additional terms that contribute at second
order, b

2

�2(x) and bs2s2(x). There is no nonlinear bias associated with the shift term in the absence of velocity bias.
Since any velocity bias must vanish in the k ! 0 limit as a consequence of Galilean invariance, we do not include any
such term.19

These terms correspond to individual components of the bispectrum in a separable form. In this case, in the limit
where tree level theory is valid, one can write an optimal bispectrum estimator using these terms. Specifically, given
a density �(x), smoothed on the smallest scale where we still trust the theory predictions, the procedure we propose
is as follows:

19 At a k

2 level there could be a velocity bias, but we ignore this here since we work at the lowest order in k. Indeed, all the biasing terms
can receive k

2 type corrections [42].
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(Poisson factor)

➟ basically just ɸ2 cross ɸ, where ɸ ~ δ/k2!

➟ in principle same S/N as getting         from measurement of the entire 
LSS bispectrum!
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b is given by an integral over the bispectrum B,
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(q,k � q, �k). (58)

For a 6= b, the bispectrum B is not symmetric in its arguments and the last argument �k is associated with �b.
Writing the smoothing kernels explicitly, we have

PD[�R
a ],�R
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(k) = WR(k)

Z
d3q

(2⇡)3
WR(q)WR(|k � q|)D(q,k � q)B�a�a�b(q,k � q, �k). (59)

C. Matter-matter-matter cross-spectra

For cross-spectra of smoothed dark matter fields (a = b = m), the DM bispectrum (16) gives
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where we used that the kernel D(q,k� q) is assumed to be symmetric in its arguments and we defined for kernels D
and E
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which is not symmetric under D $ E. Explicit predictions for the cross-spectra P�2
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can
be obtained from Eq. (61) by plugging in D = P
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and D = P
2

, respectively, and setting E = F
2

. Note
that there are three powers of the smoothing kernel because we smooth the nonlinear rather than the linear field.

The integrals in Eqs. (62) and (63) are similar to typical 1-loop expressions and can be reduced to two-dimensional
integrals over scale q and cosine q̂·k̂, which can be evaluated numerically with little computational cost (see e.g. [43, 44]
for public codes that compute similar integrals). The factors WR(|k � q|) and P lin

mm

(|k � q|) introduce a non-trivial
angle dependence so that the angular integration generally needs to be performed numerically.

The only ingredient for the theory prediction of Eq. (61) is the model for the DM bispectrum. Improved bispectrum
models that have the same form as Eq. (16) could easily be included, e.g. by replacing the perturbation theory F

2

kernel by an e↵ective F
2

kernel fitted to N -body simulations [12, 36, 37].

D. Matter-matter-halo cross-spectra

From the unsymmetric unsmoothed matter-matter-halo bispectrum of Eq. (24) we find for the cross-spectrum of a
quadratic matter field with the halo density
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can be expressed in terms of the matter-matter-matter cross-spectrum so that
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FIG. 1. Theory contributions (67) to halo-halo-halo cross-spectra scaling like b3
1

(dashed), b2
1

b
2

(dash-dotted) and b2
1

bs2 (dotted)
for squared density �2

h

(x) (blue), shift term� i
h

(x)@i�
h

(x) (red) and tidal term s2
h

(x) (green), evaluated for fixed bias parameters
b
1

= 1, b
2

= 0.5 and bs2 = 2, Gaussian smoothing with RG = 20h�1Mpc, at z = 0.55, with linear matter power spectra in
integrands. Thin gray lines show the large-scale (low k) limit given by Eq. (70). The cross-spectra are divided by the partially

smoothed FrankenEmu emulator matter power spectrum W 3/2
R P emu

mm

[45–48] for plotting convenience.

E. Halo-halo-halo cross-spectra

The halo-halo-halo bispectrum (28) gives for the halo-halo-halo cross-spectra
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Contributions depending on b3
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also appear in matter-matter-halo cross spectra, so that
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Decomposing the F
2

kernel in Legendre polynomials as in Eq. (18), Eq. (67) can be rewritten as
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The contributions to the theory expression of Eq. (67) are shown in Fig. 1 for Gaussian smoothing with R =
20h�1Mpc (see Fig. 10 in the appendix for R = 10h�1Mpc). Di↵erent colors describe di↵erent cross-spectra,
D 2 {P

0

, �F 1

2

P
1

,P
2

}, while di↵erent line styles correspond to the contributions with di↵erent dependencies on
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G. Covariances

To estimate bias and cosmological parameters from cross-spectra we need to know their noise and covariance
properties. Leading-order perturbation theory predicts for the covariance between two cross-spectra at the same
wavenumber (see Appendix B)

cov(P̂D[�R
a ],�R

b
(k), P̂E[�R

a ],�R
b
(k)) =

2

N
modes

(k)
PR

bb(k)I
PR

aaPR
aa

DE (k), (78)

where I
PR

aaPR
aa

DE is defined in Eq. (B3). The correlation between two cross-spectra is therefore
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DE (k)q
I

PR
aaPR

aa
DD (k)I

PR
aaPR

aa
EE (k)

, (79)

which does not depend on the type b of the linear field. Note that the perturbative calculation in Appendix B predicts
additional covariances between cross-spectra at di↵erent wavenumbers k 6= k0, but we neglect them here for simplicity.
Eqs. (78) and (79) will be compared against simulations in Section V C and Fig. 7.

For su�ciently large smoothing scale R and low k, we can approximate PR
hh

⇡ b2

1

PR
mm

in the integrand of Eq. (B3),
so that the halo correlation (a = h in Eq. (79)) approaches the dark matter correlation (a = m in Eq. (79)). In the
large scale limit k ! 0 the kernels D, E 2 {P

0

, �F 1

2

P
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,P
2

} become unity (see Appendix A), so that

lim
k!0
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P
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i.e. the three cross-spectra are perfectly correlated on large scales. Therefore all information is already contained
in any one of the three cross-spectra. On intermediate scales (higher k) the cross-spectra are less correlated (and
have di↵erent expectation values), so that constraints are expected to improve if more than just one cross-spectrum
is considered. On small scales, smoothing destroys clustering information and the cross-spectra become perfectly
correlated or anti-correlated (see Fig. 7 below; this happens at higher k if smaller smoothing scale R is chosen).

On large scales, k ! 0, the variance of the cross-spectra scales like PR
bb(k)/k2, because the large-scale limit of

Eq. (B3) is independent of k and N
modes

/ k2. This confirms that the k2/P weighting in the optimal bispectrum
estimators in Eqs. (36), (39), (45), (46) and (47) corresponds to inverse-variance weighting on large scales.

V. SIMULATIONS

A. Setup

We use ten realizations of N -body simulations that were also used in [51, 52]. The simulations were run with
the TreePM code of [53]. Each realization has 20483 DM particles in a box of side length L = 1380h�1Mpc. The
cosmology is flat ⇤CDM with ⌦bh

2 = 0.022,⌦mh2 = 0.139, ns = 0.965, h = 0.69 and �
8

= 0.82, and we only use the
snapshot at z = 0.55. Details of the simulations can be found in [51, 52].

To obtain the DM density, for each realization the full set of 20483 DM particles is interpolated to a N3

g = 5123

grid using the cloud-in-cell (CIC) scheme. Halos are identified using the FoF algorithm with linking length b = 0.168.
The halo sample is split into four mass bins, each spanning a factor of three in mass, and interpolated to halo density
grids using CIC. The CIC window is deconvolved from DM and halo densities. The inverse number density 1/n̄ in
units of h�3Mpc3 is 0.306 for dark matter and 351.5, 746.6, 2026.2 and 6561.3 for halo bins ordered by increasing
mass.

Before squaring any fields, we apply a Gaussian smoothing filter (54) to the density. The squared density �2(x) in
Eq. (2) is obtained by squaring this smoothed density in configuration space. To obtain the shift term � i(x)@i�(x) of
Eq. (3), the density is first Fourier-transformed to k space, where it is multiplied by k/k2 or k to get the displacement
or density gradient fields in k space. Then both fields are Fourier-transformed back to configuration space, where
they are multiplied and contracted as in Eq. (3). A similar procedure is used to obtain sij(k) and s2(x) as defined in
Eq. (6). Finally, the three quadratic fields �2(x), � i(x)@i�(x) and s2(x) are Fourier-transformed back to k-space,
where their cross-spectra with the density �(k) are estimated using Eqs. (13) and (15).

The computational cost is dominated by Fourier transforms which can be evaluated e�ciently as FFTs, requiring
only O(N3

g log N3

g ) operations. Therefore the cross-spectrum analysis with quadratic fields has the same complexity
as a usual power spectrum analysis in k-space, but it is sensitive to the full bispectrum information. Note that

Covariance between cross-spectra at the same k
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For a 6= b, the bispectrum B is not symmetric in its arguments and the last argument �k is associated with �b.
Writing the smoothing kernels explicitly, we have
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C. Matter-matter-matter cross-spectra

For cross-spectra of smoothed dark matter fields (a = b = m), the DM bispectrum (16) gives
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where we used that the kernel D(q,k� q) is assumed to be symmetric in its arguments and we defined for kernels D
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which is not symmetric under D $ E. Explicit predictions for the cross-spectra P�2

m

,�
m

, P� i
m

@i�m

,�
m

and Ps2

m

,�
m

can
be obtained from Eq. (61) by plugging in D = P

0

, D = �F 1

2

P
1

and D = P
2

, respectively, and setting E = F
2

. Note
that there are three powers of the smoothing kernel because we smooth the nonlinear rather than the linear field.

The integrals in Eqs. (62) and (63) are similar to typical 1-loop expressions and can be reduced to two-dimensional
integrals over scale q and cosine q̂·k̂, which can be evaluated numerically with little computational cost (see e.g. [43, 44]
for public codes that compute similar integrals). The factors WR(|k � q|) and P lin
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(|k � q|) introduce a non-trivial
angle dependence so that the angular integration generally needs to be performed numerically.

The only ingredient for the theory prediction of Eq. (61) is the model for the DM bispectrum. Improved bispectrum
models that have the same form as Eq. (16) could easily be included, e.g. by replacing the perturbation theory F
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kernel by an e↵ective F
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kernel fitted to N -body simulations [12, 36, 37].

D. Matter-matter-halo cross-spectra

From the unsymmetric unsmoothed matter-matter-halo bispectrum of Eq. (24) we find for the cross-spectrum of a
quadratic matter field with the halo density
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FIG. 1. Theory contributions (67) to halo-halo-halo cross-spectra scaling like b3
1

(dashed), b2
1

b
2

(dash-dotted) and b2
1

bs2 (dotted)
for squared density �2

h

(x) (blue), shift term� i
h

(x)@i�
h

(x) (red) and tidal term s2
h

(x) (green), evaluated for fixed bias parameters
b
1

= 1, b
2

= 0.5 and bs2 = 2, Gaussian smoothing with RG = 20h�1Mpc, at z = 0.55, with linear matter power spectra in
integrands. Thin gray lines show the large-scale (low k) limit given by Eq. (70). The cross-spectra are divided by the partially

smoothed FrankenEmu emulator matter power spectrum W 3/2
R P emu

mm

[45–48] for plotting convenience.

E. Halo-halo-halo cross-spectra

The halo-halo-halo bispectrum (28) gives for the halo-halo-halo cross-spectra
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Contributions depending on b3

1

also appear in matter-matter-halo cross spectra, so that
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Decomposing the F
2

kernel in Legendre polynomials as in Eq. (18), Eq. (67) can be rewritten as
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The contributions to the theory expression of Eq. (67) are shown in Fig. 1 for Gaussian smoothing with R =
20h�1Mpc (see Fig. 10 in the appendix for R = 10h�1Mpc). Di↵erent colors describe di↵erent cross-spectra,
D 2 {P

0

, �F 1

2

P
1

,P
2

}, while di↵erent line styles correspond to the contributions with di↵erent dependencies on
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FIG. 3. Matter-matter-matter cross-spectra measured from 10 realizations at z = 0.55 (crosses with error bars), compared
with leading order theory prediction of Eq. (61) (solid lines), neglecting shot noise. Upper panels show cross-spectra divided

by the partially smoothed emulator matter power spectrum W 3/2
R P emu

mm

, lower panels show the ratio of measured cross-spectra
over their theory expectation (61). Gaussian smoothing is applied with RG = 20h�1Mpc (left) and RG = 10h�1Mpc (right).
Di↵erent colors represent di↵erent cross-spectra (squared density in blue, shift term in red and tidal term in green).

Before squaring any fields, we apply a Gaussian smoothing filter (54) to the density. The squared density �2(x)
in Eq. (2) is obtained by squaring this smoothed density in real space. To obtain the shift term � i(x)@i�(x) of
Eq. (3), the density is first Fourier-transformed to k space, where it is multiplied by k/k2 or k to get the displacement
or density gradient fields in k space. Then both fields are Fourier-transformed back to real space, where they are
multiplied and contracted as in Eq. (3). A similar procedure is used to obtain sij(k) and s2(x) as defined in Eq. (6).
Finally, the three quadratic fields �2(x), � i(x)@i�(x) and s2(x) are Fourier-transformed back to k-space, where their
cross-spectra with the density �(k) are estimated using Eqs. (13) and (15).

The computational cost is dominated by Fourier transforms which can be evaluated e�ciently as FFTs, requiring
only O(N3

g log N3

g ) operations. Therefore the cross-spectrum analysis with quadratic fields has the same complexity
as a usual power spectrum analysis in k-space, but it is sensitive to the full bispectrum information. Note that
brute-force estimation of the bispectrum triangle by triangle is computationally more expensive by several orders of
magnitude because it requires O(N6

g ) operations.
Theoretical expressions for expectation values and covariances use the linear matter-matter power spectrum com-

puted by CAMB [52] at z = 0.55 for our fiducial cosmology. If theoretical expressions involve halo-halo power spectra,
we use the estimated ensemble-averaged halo power spectrum corrected for shot noise and CIC. For plotting conve-
nience, the cross-spectrum expectation values are typically divided by the partially smoothed nonlinear matter power

spectrum W
3/2

R P emu

mm

which is calculated with the FrankenEmu emulator [43–46]. Error bars in all plots of this paper
show the standard error of the mean of the ten realizations, which is estimated as the sample standard deviation
divided by

p
10. This corresponds to 1� errors in the total volume 26.3h�3Gpc3 of the ten realizations.13

B. Cross-spectrum expectation values

We test the consistency of the model by comparing theory expressions for matter-matter-matter, matter-matter-
halo and halo-halo-halo cross-spectra with simulations. Since the goal of this section is to test the model, we consider
statistics involving the dark matter field although they cannot directly be observed.

Fig. 3 compares matter-matter-matter cross-spectra measured in simulations against the theory expression of
Eq. (61), finding agreement at the 5% level for k . 0.09h/Mpc for R = 20h�1Mpc and R = 10h�1Mpc. This
demonstrates that the model for matter-matter-matter cross-spectra works well on large scales.

Figs. 4 and 5 test the model for matter-matter-halo cross-spectra by comparing the excess cross-spectra

P̂D[�R
m

]�R
h

(k) � b̂
1

P̂D[�R
m

]�R
m

(k) (81)

13 Due to the small number of realizations the estimated error bars are rather uncertain, see Fig. 9 below for a comparison with theoretical
error bars.
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FIG. 11. Dependence of the stochasticity correction on halo mass and redshift. The lines are based on linear bias parameters
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shows the positive low mass correction arising from non-linear biasing whereas the dash-dotted blue, green and red lines show
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2

-weighting and the magenta line
shows the modified mass weighting proposed by [4].

So far we have concentrated on the stochasticity correction for narrow mass bins and quantified them in terms of
the corresponding stochasticity matrix. If all the corrections were linear in the parameters of the model, all we needed
to do is to calculate the corresponding mean parameters of the sample and use them to calculate the stochasticity
correction for the combined sample. However, the corrections are in general a non-linear function of the parameters.
The wider the mass bins the less exact is a bulk description by a set of mean parameters. It should be more exact
to consider subbins and combine them. Thus we need to calculate the stochasticity correction for narrow mass bins
M 2 [M i,M i] i = 1, . . . , h. Then, when considering samples that span a wide range of halo masses or realistic galaxy
samples, we need to weight the prediction for the stochasticity correction accordingly. The weighted density field is
then

�̃ =

P
i wi�iP
i wi

(51)

Correction to 1/n shot noise in 
P(k) (Baldauf et al. 1305.2917)

Correction to P(k)/n part of shot 
noise in bispectrum
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(imposing �
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) to halo-halo-halo cross-spectra involving the
squared density (blue), shift term (red) or tidal term (green), or all three combined (black), choosing Gaussian R = 20h�1Mpc
smoothing and k

max

= 0.09h/Mpc for the halo mass bin with b
1

= 1.98. The 2d contours of the posterior show 68% and 95%
confidence regions corresponding to the full volume of V = 26.3h�3Gpc3 (i.e. errors in a single realization would be larger by a
factor of

p
10). The joint likelihood for the three halo-halo-halo cross-spectra is assumed to be Gaussian in the cross-spectra,

with non-zero covariance between cross-spectra at k = k0 given by the theory expression of Eq. (78). The green contours are
somewhat uncertain because it is not clear how well the MCMC chains sampled the elongated degeneracies.

of ⇠ 1.8 for the conservative k
max

= 0.09h/Mpc and by a factor of ⇠ 1.25 for the more ambitious k
max

= 0.24h/Mpc.
This could be attributed to additional contributions to the true covariance that are neglected in our theoretical
covariance (e.g. at k0 6= k), or uncertainty in the determination of the jack-knife errors due to the small number of
realizations, or a departure of the true likelihood from a Gaussian pdf.

Summarizing the above, it seems possible to reach percent-level estimates of the linear bias b
1

from halo-halo-halo
cross-spectra in real surveys, but we re-emphasize that we made a number of unrealistic assumptions, which could
easily change this conclusion (to the better or worse).

VI. EXTENSION TO PRIMORDIAL NON-GAUSSIANITY

So far we have assumed Gaussian initial conditions. Multiple-field inflation models can generate local primordial
non-Gaussianity that induces an additional contribution to the matter-matter-matter bispectrum of the local form
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)M(k
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)
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mm
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) + 2 perms

�
, (82)

where M(k) = M(k, z) is the linear Poisson conversion factor between the primordial potential � and the late-time
matter density at redshift z,

M(k, z) ⌘ 2

3

k2T (k)D(z)

⌦
m

H2

0

, (83)
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This could be attributed to additional contributions to the true covariance that are neglected in our theoretical
covariance (e.g. at k0 6= k), or uncertainty in the determination of the jack-knife errors due to the small number of
realizations, or a departure of the true likelihood from a Gaussian pdf.

Summarizing the above, it seems possible to reach percent-level estimates of the linear bias b
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cross-spectra in real surveys, but we re-emphasize that we made a number of unrealistic assumptions, which could
easily change this conclusion (to the better or worse).

VI. EXTENSION TO PRIMORDIAL NON-GAUSSIANITY

So far we have assumed Gaussian initial conditions. Multiple-field inflation models can generate local primordial
non-Gaussianity that induces an additional contribution to the matter-matter-matter bispectrum of the local form
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where M(k) = M(k, z) is the linear Poisson conversion factor between the primordial potential � and the late-time
matter density at redshift z,
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COMPARISON WITH TRADITIONAL 
BISPECTRUM ESTIMATION

Advantages of cross-spectra over estimating bispectrum for individual triangles!

Simple#

Nearly optimal (contains entire bispectrum information)!

Fast (like power spectrum estimation)!

Depends on just single k, i.e. covariances are easy!

Challenges!

Redshift space distortions: messier but doable (ideas/tricks welcome!)!

Not optimal beyond tree level and beyond weakly non-Gaussian fields 
(could be improved with better theory or by combining with modal estimators that are 
sensitive to arbitrary bispectra)

MS, Baldauf, Seljak, 1411.6595 

Position-dependent power  
spectrum (Chiang++) is only 
sensitive to squeezed limit 
where grav. signal vanishes
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WHAT DO CMB PEOPLE DO?

CMB bispectrum estimation!

2001: individual triangles of COBE data (lmax=20)!

since 2003: KSW fNL estimators for separable bispectrum 
templates (now standard)!

CMB lensing trispectrum:!
➟ never used individual quadrilaterals, but always max-

likeli estimators for known trispectrum shape!
➟ reconstructed lensing potential is                      !
➟ trispectrum = auto-power of this quadratic field!

ISW-lensing bispectrum: cross-spectrum of              and T!

modal estimators (sensitive to arbitrary bispectra — reduce to our 
cross-spectra if halo bispectrum contributions are used as basis shapes)

cr� / TrT

�̂ ⇠ T 2

Komatsu et al. 2001

Komatsu+Spergel
+Wandelt 2003!

Lewis et al. 2011,  
Planck 2013 XIX (ISW)

Fergusson+Shellard
+Liguori 2009-2014,!
Planck 2013 XXIV (NG)
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LSS methods at the level where CMB was 2001

 

Cross-spectrum method is first step to 

modernize this for LSS!

 
but it’s really only a first step:  

our method is not yet ready for real data,  

while traditional method has been applied to real data 

(most recently by Gil-Marin et al. 2014)



Explored new estimators to measure bispectrum parameters in a nearly 
optimal way using cross-spectra of 3 quadratic fields with the density!

!

!

!

!

Simulations agree with theory on large scales!

Linear halo bias b1 mostly determined by shift term cross density!

Shot noise requires non-Poissonian corrections !

Future: e.g. RSDs, model to higher k, apply to real data
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1. Compute the density gradient @i�(x), the displacement field  i(x) = �@i@
�2�(x), and the tidal tensor sij(x) =⇥

@i@j@
�2 � 1

3

�
(K)

ij

⇤
�(x).

2. Compute the squared density �2(x), the shift term � i(x)@i�(x) and the tidal term s2(x) = 3

2

sij(x)sij(x).

3. Fourier transform the three quadratic fields to get [�2](k), [� i@i�](k) and [s2](k).

4. Compute the cross-spectra between the quadratic fields and the density, i.e. (suppressing division by the number
of modes)

P̂�2,�(k) ⇠
X

k,|k|=k

[�2](k)�(�k), (87)

P̂� i@i�,�(k) ⇠
X

k,|k|=k

[� i@i�](k)�(�k) (88)

P̂s2,�(k) ⇠
X

k,|k|=k

[s2](k)�(�k). (89)

As expected from the Legendre decomposition of the halo bispectrum, the l = 1 shift cross-spectrum (88) contains
almost the entire bispectrum information on the linear bias b

1

, while the l = 0 squared density cross-spectrum (87)
and the l = 2 tidal cross-spectrum (89) mostly improve constraints on b

2

and bs2 once b
1

is known. Measuring all
three cross-spectra and comparing them to their theory predictions is equivalent to an optimal maximum-likelihood
estimation of the amplitudes of contributions to dark matter or halo bispectra (under certain regularity conditions; see
Section III). Therefore, these cross-spectra contain the same constraining power on bias parameters and �

8

as a full
optimal bispectrum analysis. Measuring cross-spectra is both simpler and computationally cheaper than performing
direct bispectrum measurements for individual triangle configurations. Since they only depend on a single rather than
three wavenumbers, modeling the covariance is also simpler.

We have derived leading-order perturbation theory predictions for the expectation values and covariances of the
three cross-spectra, where both the quadratic and the single field can be dark matter or halo fields, and second
order bias b

2

and tidal tensor bias bs2 are included. The results are given by integrals over matter-matter-matter,
matter-matter-halo or halo-halo-halo bispectra.

The proposed cross-spectra were measured on a set of ten large N -body simulations. The expectation values are
consistent with perturbation theory at the few percent level for k . 0.09h/Mpc at z = 0.55 for matter-matter-matter
and matter-matter-halo combinations, if all fields are smoothed by a Gaussian with smoothing scale R = 20h�1Mpc.
For halo-halo-halo cross-spectra, one must include corrections to the Poisson stochasticity. While these corrections are
qualitatively similar to corrections to the halo-halo power spectrum due to exclusion and nonlinear biasing [50], future
work should investigate and model them in more detail. The predicted variance of the cross-spectra and the covariance
between any two cross-spectra at the same wavenumber are found to be consistent with simulations (although the
numerical noise is somewhat large given the small number of independent realizations).

The ultimate goal of this is to determine the three bias parameters and dark matter clustering power spectrum
by combining these three statistics with the measured galaxy power spectrum. We have not performed this step in
this paper: we plan to explore potential improvements of the modeling by including higher order perturbation theory
terms as well as improved bias and stochasticity models to measure the new observables in galaxy surveys in future
work. We also plan to include redshift space distortions by accordingly modifying and extending the cross-spectra.
Given the simplicity of the method and the agreement with leading-order perturbation theory on large scales, we hope
it will become a useful tool to break degeneracies of bias and cosmological parameters.
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BARYONIC ACOUSTIC OSCILLATIONS (BAO)
Eisenstein/Seo/White 2006!

– 5 –

Fig. 1.— Snapshots of evolution of the radial mass profile versus comoving radius of an initially point-like
overdensity located at the origin. All perturbations are fractional for that species; moreover, the relativistic
species have had their energy density perturbation divided by 4/3 to put them on the same scale. The
black, blue, red, and green lines are the dark matter, baryons, photons, and neutrinos, respectively. The
redshift and time after the Big Bang are given in each panel. The units of the mass profile are arbitrary
but are correctly scaled between the panels for the synchronous gauge. a) Near the initial time, the photons
and baryons travel outwards as a pulse. b) Approaching recombination, one can see the wake in the cold
dark matter raised by the outward going pulse of baryons and relativistic species. c) At recombination, the
photons leak away from the baryonic perturbation. d) With recombination complete, we are left with a
CDM perturbation towards the center and a baryonic perturbation in a shell. e) Gravitational instability
now takes over, and new baryons and dark matter are attracted to the overdensities. f) At late times, the
baryonic fraction of the perturbation is near the cosmic value, because all of the new material was at the
cosmic mean. These figures were made by suitable transforms of the transfer functions created by CMBfast
(Seljak & Zaldarriaga 1996; Zaldarriaga & Seljak 2000).
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cosmic mean. These figures were made by suitable transforms of the transfer functions created by CMBfast
(Seljak & Zaldarriaga 1996; Zaldarriaga & Seljak 2000).
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The acoustic wave"
As the perturbation grows by ~103 the baryons and DM reach 

equilibrium densities in the ratio Ωb/Ωm."

 The final configuration is our original peak at the center (which we 
put in by hand) and an “echo”  in a shell roughly 100Mpc in radius."

Further (non-linear) processing of the density field acts to broaden and very 
slightly shift the peak -- but galaxy formation is a local phenomenon with a 

length scale ~10Mpc, so the action at r=0 and r~100Mpc are essentially 
decoupled.  We will return to this …"

Expansion + clustering

BARYONIC ACOUSTIC OSCILLATIONS (BAO)



BAO IMPRINT ON LSS

Correlation function        : BAO bump Power spectrum P(k): BAO wiggles⇠(r)

x 0.7!



BAO IMPRINT ON LSS

Non-linearities: !

Add small-scale power!

Smear out BAO peak, i.e. degrade BAO information!

Slightly shift BAO scale!

Correlation function        : BAO bump Power spectrum P(k): BAO wiggles⇠(r)

x 0.7!



BAO RECONSTRUCTION

Goal: Restore linear modes to 
increase BAO information!

!
Method: Undo large-scale flows 
that broaden the BAO peak:!

Calculate large-scale 
displacement/velocity field 
with Zeldovich approximation!

!
!
Displace clustered and 
random catalog by this!

➡ get `displaced’ and 
`shifted’ densities δd and δs!

Reconstructed density = δd - δs

s(k) = � ik

k2
WR(k)�(k)

3

Fig. 2.— The matter power spectrum after reconstruction by
the linear-theory density-velocity relation, with the density field
Gaussian filtered. The bottom panel shows the real-space power
spectrum; the top panel shows the spherically averaged redshift-
space power spectrum. The black solid line shows the input power
spectrum at z = 49; it has been displaced in the top panel for
clarity. The blue short-dashed line shows the matter power spec-
trum at z = 0.3; one can see that acoustic peaks have been lost.
In the bottom panel, the red dot-dashed line and magenta long-
dashed line show the effects of reconstruction for 20h−1 Mpc and
10h−1 Mpc Gaussian filtering, respectively. In the top panel, both
lines show 10h−1 Mpc filtering; the red dot-dashed line is without
finger of God compression, while the magenta long-dashed line in-
cludes compression. The increase of power at large wavenumbers
is essentially irrelevant to the quality of the acoustic signature; one
would in practice marginalize over these broadband changes.

When one predicts the large-scale displacement field,
one is also predicting the large-scale velocity field
and hence the correction for large-scale peculiar ve-
locities in redshift space. This is important because
Eisenstein et al. (2006) find that redshift space distor-
tions degrade the radial measurement of the acoustic
peak. On large scales, the real-space displacements of
particles are in the same direction as their peculiar ve-
locity distortion, so the degradation of the acoustic peak
is worse in redshift space than in real space. Reconstruc-
tion can fix this.

However, there are also redshift-space distortions from
small-scale peculiar velocities, i.e., fingers of God. Clus-
ters of galaxies appear as long cigars along the line of
sight in redshift space. For the purposes of determining
bulk flows, one should simply compress these fingers of
God back to some approximation of their real-space loca-
tion. Without this step, the fingers of God get stretched
out further by the reconstruction, degrading the acous-
tic signature. To show that finger-of-God compression
can help the reconstruction, we have identified clusters
in redshift space with an anisotropic friends-of-friends al-
gorithm and moved all cluster particles to the center of
mass of the cluster. The correlation function that results
from running our reconstruction on the compressed den-
sity field is shown in Figure 4. One sees a modest but
useful improvement.

The simple reconstruction described above has not
fully restored the linear acoustic scale, particularly when
beginning from redshift space. We expect that more so-

Fig. 3.— The real-space matter correlation function after recon-
struction by the linear-theory density-velocity relation, with the
density field Gaussian filtered. The black solid line shows the cor-
relation function at z = 49. The blue short-dashed line shows it
at z = 0.3; the acoustic peak has been smeared out. The red
dot-dashed and magenta long-dashed lines show the effects of re-
construction for 20h−1 Mpc and 10h−1 Mpc Gaussian filtering, re-
spectively. Even this very simple reconstruction recovers nearly all
of the linear acoustic peak.

Fig. 4.— The redshift-space matter correlation function after
reconstruction by the linear-theory density-velocity relation, with
the density field Gaussian filtered. The black solid line shows the
correlation function at z = 49. The blue short-dashed line shows
the redshift-space correlation function at z = 0.3; the acoustic peak
has been smeared out. The black dotted line shows the real-space
correlation function for comparison. The red dot-dashed line line
shows the effects of reconstruction for a 10h−1 Mpc Gaussian filter-
ing; the magenta long-dashed line is the result when one compresses
the fingers of God prior to the reconstruction. These reconstruc-
tions significantly improve the acoustic peak.

phisticated reconstruction methods will produce further
improvements. The small end of the range of the scales of
interest are in the quasi-linear regime, and our assump-
tion of linear theory for both the continuity equation and
the redshift distortions is only a first approximation here.

We use a Fisher matrix calculation to estimate how
much the reconstruction has improved the recovery of
the acoustic scale. Our calculation is based on the meth-
ods in Seo & Eisenstein (2003) but with the derivatives
multiplied by a Gaussian filtering that is tuned to match
the pair-wise Lagrangian displacement (Eisenstein et al.
2006) and that visually reproduces the smearing of the
acoustic peak. We focus here on the spherically-averaged
acoustic scale; we will present anisotropic results (i.e.,
separate estimates for the angular diameter distance and
the Hubble parameter) in a future paper. We find that

no reconstruction

linear

reconstructed

Simulations

Eisenstein et al. 2006!
Padmanabhan et al. 2008



BAO RECONSTRUCTION

Works great in practice:  
For BOSS DR11, BAO signal-to-noise improved by ~50%,  
achieving sub-percent BAO scale constraint

Padmanabhan et al. 2012!
Anderson et al. 2013!

BAO in SDSS-III BOSS galaxies 17

Figure 11. DR11 CMASS clustering measurements (black circles) with ⇠(s) shown in the left panels and P (k) in the right panels. The top panels show the
measurements prior to reconstruction and the bottom panels show the measurements after reconstruction. The solid lines show the best-fit BAO model in each
case. One can see that reconstruction has sharpened the acoustic feature considerably for both ⇠(s) and P (k).

Figure 12. Plot of �2 vs. ↵, for reconstructed data from DR10 (blue), and DR11 (black) data, for P (k) (left) and ⇠(s) (right). The dashed lines display the �2

for a model without BAO, which we compute by setting ⌃NL ! 1 in Eqs. (23) and (26). In the ⇠(s) case, this limiting template still depends on ↵, so the
�2(↵) is not constant. Our P (k) model has no dependence on ↵ in this limit. The DR11 detection significance is greater than 7� for P (k) and 8� for ⇠(s).

c� 2014 RAS, MNRAS 000, 2–39

Anderson et al. 2013!
(BOSS DR11)!
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NEW ALGORITHMS: WHY?

Motivations to dig deeper & explore new reconstruction algorithms:!

Where does the new BAO information come from?!

Can we derive reconstruction algorithm(s) better?!

Can we do better in terms of BAO information?!

Can we reduce intermixing of model and data when reconstructing?!

(e.g. standard reconstruction makes assumptions on f, galaxy bias, 
gravity when transforming data)!

!

Tried to address some of these points in recent paper (1508.06972)



NEW ALGORITHMS: CATEGORIES

Useful to consider two categories of reconstruction algorithms:

Eulerian


reconstructions

Never displace any objects!

Work only with Eulerian 
density!

E.g. �rec = � � �2



NEW ALGORITHMS: CATEGORIES

Useful to consider two categories of reconstruction algorithms:

Lagrangian


reconstructions

Displace objects at some stage 
of the algorithm!

E.g. standard algorithm 
(Eisenstein et al. 2006)

Eulerian


reconstructions

Never displace any objects!

Work only with Eulerian 
density!

E.g. �rec = � � �2



NEW EULERIAN ALGORITHM I

Eulerian growth-shift (EGS) reconstruction!

Go back in time

MS et al. 1508.06972!

�rec(x) = �(x, ⌘ ��⌘) ⇡ �(x, ⌘)��⌘ @⌘�(x, ⌘)



NEW EULERIAN ALGORITHM I

Eulerian growth-shift (EGS) reconstruction!

Go back in time

MS et al. 1508.06972!

�rec(x) = �(x, ⌘ ��⌘) ⇡ �(x, ⌘)��⌘ @⌘�(x, ⌘)

@⌘� +r · [(1 + �)v] = 0

) @⌘� = �r · v � v ·r� � �r · v

Get density time derivative nonperturbatively from nonlinear continuity equation



NEW EULERIAN ALGORITHM I

Eulerian growth-shift (EGS) reconstruction!

Go back in time

MS et al. 1508.06972!

Approximate velocity in terms of smoothed density δR (using linear relation)!

) r · v = �Rv(k) ⇡ �s(k) ⌘ ik

k2
�R(k)

- Not reverting linear 
time evolution!

- Not displacing any 
objects, i.e. Eulerian!

- Nonperturbative in δ, 
linear in velocity

) �rec
EGS

(x) = �(x)� s(x) ·r�(x)| {z }
shift

� �(x)�R(x)| {z }
growth

�rec(x) = �(x, ⌘ ��⌘) ⇡ �(x, ⌘)��⌘ @⌘�(x, ⌘)

@⌘� +r · [(1 + �)v] = 0

) @⌘� = �r · v � v ·r� � �r · v

Get density time derivative nonperturbatively from nonlinear continuity equation



NEW EULERIAN ALGORITHM I

Eulerian growth-shift (EGS) reconstruction!

Reconstructed power spectrum:!

MS et al. 1508.06972!

�2
⌦
�2|�

↵
� 2 hs ·r�|�i

+
⌦
�2|�2

↵
+ hs ·r�|s ·r�i+ 2

⌦
�2|s ·r�

↵

2-point

3-point

4-point

) h�recEGS|�recEGSi = h�|�i

➡ Automatically combines 2-, 3- and 4-point of the unreconstructed density!

➡ Explicitly see how reconstruction exploits 3- and 4-point BAO information!

➡ Cross-spectra are the same as in part I of the talk, i.e. nearly-optimal!

➡ Get similar combinations for all our other Eulerian reconstructions

�recEGS = � � �2 � s ·r�

) h�recEGS|�recEGSi = h�|�i



NEW EULERIAN ALGORITHM II

Eulerian F2 (EF2) reconstruction!

Second-order density!

!

!

Remove this from the full density

MS et al. 1508.06972!

�(2)(x) =
17

21
�2
0

(x)
| {z }
growth

� 
0

(x) ·r�
0

(x)| {z }
shift

+
4

21
K2

0

(x)
| {z }

tidal

�rec
EF2

(x) ⌘ �(x)� 17

21
�R(x)�(x)

| {z }
growth

� s(x) ·r�(x)| {z }
shift

� 4

21
K2

R(x)
| {z }

tidal

More formal derivation using Newton-Raphson iteration:  
Find linear density compatible with a given observed nonlinear density, i.e. solve  
                                                       for δ0!f [�

0

] ⌘ �
0

+ F
2

[�
0

]� �
obs

= 0



NEW LAGRANGIAN ALGORITHMS

Lagrangian Random-random (LRR) reconstruction!

2LPT theory for clustered and random catalogs displaced by negative or 
positive Zeldovich displacement: δd[s], δd[-s], δs[s], δs[-s] !

Only 2 of 6 possible combinations suppress 2nd order nonlinearities:!

Lagrangian growth-shift (LGS) reconstruction (= standard algorithm)!

!

Lagrangian random-random (LRR) reconstruction:!

!

!

MS et al. 1508.06972!

�recLGS = �d[s]� �s[s]

�recLRR = � � 1

2

⇢
�s[s] + �s[�s]

�



NEW LAGRANGIAN ALGORITHMS

Lagrangian F2 (LF2) reconstruction!

Unique combination of LRR and standard LGS algorithms reverses full 
second-order density (up to smoothing)!

MS et al. 1508.06972!

�recLF2 =
3

7
�recLGS +

4

7
�recLRR



OVERVIEW

All reconstruction algorithms

MS et al. 1508.06972!

11

Eulerian Lagrangian

Growth-Shift �rec
EGS

(x) = �(x)� �R(x)�(x)� s(x) ·r�(x) �rec
LGS

= �d[s]� �s[s]

Full F2 �rec
EF2

(x) = �(x)� 17

21

�R(x)�(x)� s(x)r�(x)� 4

21

K2

R(x) �rec
LF2

= 3

7

�rec
LGS

+ 4

7

�rec
LRR

Random-Random �rec
ERR

= �(x)� 2

3

�2R(x)� s(x) ·r�R(x)� 1

3

K2

RR(x) �rec
LRR

= � � 1

2

{�s[s] + �s[�s]}

TABLE I. Overview of the reconstruction algorithms considered in this paper. Lagrangian reconstructions involve displacements
of objects which is not the case for Eulerian reconstructions. Methods in the same row agree at second order LPT. The standard
BAO reconstruction algorithm is called Lagrangian growth-shift reconstruction and listed on the upper right.

1. LGS: Lagrangian Growth-Shift Reconstruction (Section IVB)

This is the standard BAO reconstruction algorithm proposed in [8]: Objects in clustered and random catalogs are
displaced by the large-scale negative Zeldovich displacement field s, and the di↵erence between the corresponding
‘displaced’ and ‘shifted ’densities �d[s] and �s[s] gives the reconstructed density,

�rec
LGS

= �d[s]� �s[s]. (57)

2. LF2: Lagrangian F2 Reconstruction (Section IVC)

The LGS and LRR methods are combined such that the second order F
2

part of the unreconstructed density is
subtracted on large scales,

�rec
LF2

⌘ 3

7
�rec
LGS

+
4

7
�rec
LRR

. (58)

3. LRR: Lagrangian Random-Random reconstruction (Section IVB)

This involves two oppositely shifted randoms: Randoms are shifted by the negative Zeldovich displacement, �s[s],
and by the positive Zeldovich displacement, �s[�s], and their mean is subtracted from the observed density,

�rec
LRR

= � � 1

2
{�s[s] + �s[�s]} . (59)

The result agrees with the linear density at first order and suppresses the nonlinear growth and shift term at
second order.

As explained before, the 2LPT model for the reconstructed density of each Eulerian algorithm agrees with the
corresponding Lagrangian-reconstructed density, although the algorithms are operationally very di↵erent. All recon-
struction algorithms leave the power spectrum unchanged on the very largest scales and reverse nonlinearities on
smaller scales in di↵erent ways.

VI. SIMULATIONS

To test the performance of the above reconstruction algorithms, we ran several N-body simulations with the
FastPM code [28], derived from the parallel COLA [29] implementation of [13, 30]. This is a particle-mesh (PM)
code that uses linear time stepping in the scaling factor a to produce accurate large scale structure at a fraction of
the total computing time of a typical TreePM N-body simulation. We set up 2LPT initial conditions for 20483 DM
particles in a box of length L = 1380Mpc/h per side and evolve them from the initial redshift zi = 99 to present
time with 80 time steps. From z = 99 to z = 1 we use a 40963 PM grid; at z < 1 we switch to a 61443 PM grid.
We only use a single snapshot at z = 0.55, which is taken after 52 time steps. We run three independent realizations
by generating Gaussian random fields following an initial DM power spectrum. For each realization we also run a
nowiggle simulation that has the same phases but is obtained from a nowiggle power spectrum where BAO wiggles are
smoothed out. The cosmic variance caused by broadband fluctuations can thus be cancelled when comparing wiggle
and nowiggle simulations [31, 32]. We assume a flat ⇤CDM cosmology with ⌦m = 0.272, h = 0.702,�

8

= 0.807 for
the N-body simulations. The convergence of the simulations is discussed in Appendix D 1.

For all plots that do not require wiggle and nowiggle simulations, we instead use ‘RunPB’ N-body simulations
produced by Martin White with the TreePM N-body code of [33]. These simulations were also used in [24, 34, 35].
They have 10 realizations of 20483 DM particles in a box with side length L = 1380Mpc/h, and were started with 2LPT
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TABLE I. Overview of the reconstruction algorithms considered in this paper. Lagrangian reconstructions involve displacements
of objects which is not the case for Eulerian reconstructions. Methods in the same row agree at second order LPT. The standard
BAO reconstruction algorithm is called Lagrangian growth-shift reconstruction and listed on the upper right.

1. LGS: Lagrangian Growth-Shift Reconstruction (Section IVB)

This is the standard BAO reconstruction algorithm proposed in [8]: Objects in clustered and random catalogs are
displaced by the large-scale negative Zeldovich displacement field s, and the di↵erence between the corresponding
‘displaced’ and ‘shifted ’densities �d[s] and �s[s] gives the reconstructed density,

�rec
LGS

= �d[s]� �s[s]. (57)

2. LF2: Lagrangian F2 Reconstruction (Section IVC)

The LGS and LRR methods are combined such that the second order F
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3. LRR: Lagrangian Random-Random reconstruction (Section IVB)

This involves two oppositely shifted randoms: Randoms are shifted by the negative Zeldovich displacement, �s[s],
and by the positive Zeldovich displacement, �s[�s], and their mean is subtracted from the observed density,
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{�s[s] + �s[�s]} . (59)

The result agrees with the linear density at first order and suppresses the nonlinear growth and shift term at
second order.

As explained before, the 2LPT model for the reconstructed density of each Eulerian algorithm agrees with the
corresponding Lagrangian-reconstructed density, although the algorithms are operationally very di↵erent. All recon-
struction algorithms leave the power spectrum unchanged on the very largest scales and reverse nonlinearities on
smaller scales in di↵erent ways.

VI. SIMULATIONS

To test the performance of the above reconstruction algorithms, we ran several N-body simulations with the
FastPM code [28], derived from the parallel COLA [29] implementation of [13, 30]. This is a particle-mesh (PM)
code that uses linear time stepping in the scaling factor a to produce accurate large scale structure at a fraction of
the total computing time of a typical TreePM N-body simulation. We set up 2LPT initial conditions for 20483 DM
particles in a box of length L = 1380Mpc/h per side and evolve them from the initial redshift zi = 99 to present
time with 80 time steps. From z = 99 to z = 1 we use a 40963 PM grid; at z < 1 we switch to a 61443 PM grid.
We only use a single snapshot at z = 0.55, which is taken after 52 time steps. We run three independent realizations
by generating Gaussian random fields following an initial DM power spectrum. For each realization we also run a
nowiggle simulation that has the same phases but is obtained from a nowiggle power spectrum where BAO wiggles are
smoothed out. The cosmic variance caused by broadband fluctuations can thus be cancelled when comparing wiggle
and nowiggle simulations [31, 32]. We assume a flat ⇤CDM cosmology with ⌦m = 0.272, h = 0.702,�

8

= 0.807 for
the N-body simulations. The convergence of the simulations is discussed in Appendix D 1.

For all plots that do not require wiggle and nowiggle simulations, we instead use ‘RunPB’ N-body simulations
produced by Martin White with the TreePM N-body code of [33]. These simulations were also used in [24, 34, 35].
They have 10 realizations of 20483 DM particles in a box with side length L = 1380Mpc/h, and were started with 2LPT
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BAO reconstruction algorithm is called Lagrangian growth-shift reconstruction and listed on the upper right.

1. LGS: Lagrangian Growth-Shift Reconstruction (Section IVB)

This is the standard BAO reconstruction algorithm proposed in [8]: Objects in clustered and random catalogs are
displaced by the large-scale negative Zeldovich displacement field s, and the di↵erence between the corresponding
‘displaced’ and ‘shifted ’densities �d[s] and �s[s] gives the reconstructed density,
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3. LRR: Lagrangian Random-Random reconstruction (Section IVB)

This involves two oppositely shifted randoms: Randoms are shifted by the negative Zeldovich displacement, �s[s],
and by the positive Zeldovich displacement, �s[�s], and their mean is subtracted from the observed density,
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The result agrees with the linear density at first order and suppresses the nonlinear growth and shift term at
second order.

As explained before, the 2LPT model for the reconstructed density of each Eulerian algorithm agrees with the
corresponding Lagrangian-reconstructed density, although the algorithms are operationally very di↵erent. All recon-
struction algorithms leave the power spectrum unchanged on the very largest scales and reverse nonlinearities on
smaller scales in di↵erent ways.

VI. SIMULATIONS

To test the performance of the above reconstruction algorithms, we ran several N-body simulations with the
FastPM code [28], derived from the parallel COLA [29] implementation of [13, 30]. This is a particle-mesh (PM)
code that uses linear time stepping in the scaling factor a to produce accurate large scale structure at a fraction of
the total computing time of a typical TreePM N-body simulation. We set up 2LPT initial conditions for 20483 DM
particles in a box of length L = 1380Mpc/h per side and evolve them from the initial redshift zi = 99 to present
time with 80 time steps. From z = 99 to z = 1 we use a 40963 PM grid; at z < 1 we switch to a 61443 PM grid.
We only use a single snapshot at z = 0.55, which is taken after 52 time steps. We run three independent realizations
by generating Gaussian random fields following an initial DM power spectrum. For each realization we also run a
nowiggle simulation that has the same phases but is obtained from a nowiggle power spectrum where BAO wiggles are
smoothed out. The cosmic variance caused by broadband fluctuations can thus be cancelled when comparing wiggle
and nowiggle simulations [31, 32]. We assume a flat ⇤CDM cosmology with ⌦m = 0.272, h = 0.702,�
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= 0.807 for
the N-body simulations. The convergence of the simulations is discussed in Appendix D 1.

For all plots that do not require wiggle and nowiggle simulations, we instead use ‘RunPB’ N-body simulations
produced by Martin White with the TreePM N-body code of [33]. These simulations were also used in [24, 34, 35].
They have 10 realizations of 20483 DM particles in a box with side length L = 1380Mpc/h, and were started with 2LPT
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TABLE I. Overview of the reconstruction algorithms considered in this paper. Lagrangian reconstructions involve displacements
of objects which is not the case for Eulerian reconstructions. Methods in the same row agree at second order LPT. The standard
BAO reconstruction algorithm is called Lagrangian growth-shift reconstruction and listed on the upper right.

1. LGS: Lagrangian Growth-Shift Reconstruction (Section IVB)

This is the standard BAO reconstruction algorithm proposed in [8]: Objects in clustered and random catalogs are
displaced by the large-scale negative Zeldovich displacement field s, and the di↵erence between the corresponding
‘displaced’ and ‘shifted ’densities �d[s] and �s[s] gives the reconstructed density,
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= �d[s]� �s[s]. (57)

2. LF2: Lagrangian F2 Reconstruction (Section IVC)

The LGS and LRR methods are combined such that the second order F
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3. LRR: Lagrangian Random-Random reconstruction (Section IVB)

This involves two oppositely shifted randoms: Randoms are shifted by the negative Zeldovich displacement, �s[s],
and by the positive Zeldovich displacement, �s[�s], and their mean is subtracted from the observed density,
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{�s[s] + �s[�s]} . (59)

The result agrees with the linear density at first order and suppresses the nonlinear growth and shift term at
second order.

As explained before, the 2LPT model for the reconstructed density of each Eulerian algorithm agrees with the
corresponding Lagrangian-reconstructed density, although the algorithms are operationally very di↵erent. All recon-
struction algorithms leave the power spectrum unchanged on the very largest scales and reverse nonlinearities on
smaller scales in di↵erent ways.

VI. SIMULATIONS

To test the performance of the above reconstruction algorithms, we ran several N-body simulations with the
FastPM code [28], derived from the parallel COLA [29] implementation of [13, 30]. This is a particle-mesh (PM)
code that uses linear time stepping in the scaling factor a to produce accurate large scale structure at a fraction of
the total computing time of a typical TreePM N-body simulation. We set up 2LPT initial conditions for 20483 DM
particles in a box of length L = 1380Mpc/h per side and evolve them from the initial redshift zi = 99 to present
time with 80 time steps. From z = 99 to z = 1 we use a 40963 PM grid; at z < 1 we switch to a 61443 PM grid.
We only use a single snapshot at z = 0.55, which is taken after 52 time steps. We run three independent realizations
by generating Gaussian random fields following an initial DM power spectrum. For each realization we also run a
nowiggle simulation that has the same phases but is obtained from a nowiggle power spectrum where BAO wiggles are
smoothed out. The cosmic variance caused by broadband fluctuations can thus be cancelled when comparing wiggle
and nowiggle simulations [31, 32]. We assume a flat ⇤CDM cosmology with ⌦m = 0.272, h = 0.702,�

8

= 0.807 for
the N-body simulations. The convergence of the simulations is discussed in Appendix D 1.

For all plots that do not require wiggle and nowiggle simulations, we instead use ‘RunPB’ N-body simulations
produced by Martin White with the TreePM N-body code of [33]. These simulations were also used in [24, 34, 35].
They have 10 realizations of 20483 DM particles in a box with side length L = 1380Mpc/h, and were started with 2LPT
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TABLE I. Overview of the reconstruction algorithms considered in this paper. Lagrangian reconstructions involve displacements
of objects which is not the case for Eulerian reconstructions. Methods in the same row agree at second order LPT. The standard
BAO reconstruction algorithm is called Lagrangian growth-shift reconstruction and listed on the upper right.

1. LGS: Lagrangian Growth-Shift Reconstruction (Section IVB)

This is the standard BAO reconstruction algorithm proposed in [8]: Objects in clustered and random catalogs are
displaced by the large-scale negative Zeldovich displacement field s, and the di↵erence between the corresponding
‘displaced’ and ‘shifted ’densities �d[s] and �s[s] gives the reconstructed density,
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2. LF2: Lagrangian F2 Reconstruction (Section IVC)

The LGS and LRR methods are combined such that the second order F
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3. LRR: Lagrangian Random-Random reconstruction (Section IVB)

This involves two oppositely shifted randoms: Randoms are shifted by the negative Zeldovich displacement, �s[s],
and by the positive Zeldovich displacement, �s[�s], and their mean is subtracted from the observed density,
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The result agrees with the linear density at first order and suppresses the nonlinear growth and shift term at
second order.

As explained before, the 2LPT model for the reconstructed density of each Eulerian algorithm agrees with the
corresponding Lagrangian-reconstructed density, although the algorithms are operationally very di↵erent. All recon-
struction algorithms leave the power spectrum unchanged on the very largest scales and reverse nonlinearities on
smaller scales in di↵erent ways.

VI. SIMULATIONS

To test the performance of the above reconstruction algorithms, we ran several N-body simulations with the
FastPM code [28], derived from the parallel COLA [29] implementation of [13, 30]. This is a particle-mesh (PM)
code that uses linear time stepping in the scaling factor a to produce accurate large scale structure at a fraction of
the total computing time of a typical TreePM N-body simulation. We set up 2LPT initial conditions for 20483 DM
particles in a box of length L = 1380Mpc/h per side and evolve them from the initial redshift zi = 99 to present
time with 80 time steps. From z = 99 to z = 1 we use a 40963 PM grid; at z < 1 we switch to a 61443 PM grid.
We only use a single snapshot at z = 0.55, which is taken after 52 time steps. We run three independent realizations
by generating Gaussian random fields following an initial DM power spectrum. For each realization we also run a
nowiggle simulation that has the same phases but is obtained from a nowiggle power spectrum where BAO wiggles are
smoothed out. The cosmic variance caused by broadband fluctuations can thus be cancelled when comparing wiggle
and nowiggle simulations [31, 32]. We assume a flat ⇤CDM cosmology with ⌦m = 0.272, h = 0.702,�
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= 0.807 for
the N-body simulations. The convergence of the simulations is discussed in Appendix D 1.

For all plots that do not require wiggle and nowiggle simulations, we instead use ‘RunPB’ N-body simulations
produced by Martin White with the TreePM N-body code of [33]. These simulations were also used in [24, 34, 35].
They have 10 realizations of 20483 DM particles in a box with side length L = 1380Mpc/h, and were started with 2LPT
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TABLE I. Overview of the reconstruction algorithms considered in this paper. Lagrangian reconstructions involve displacements
of objects which is not the case for Eulerian reconstructions. Methods in the same row agree at second order LPT. The standard
BAO reconstruction algorithm is called Lagrangian growth-shift reconstruction and listed on the upper right.

1. LGS: Lagrangian Growth-Shift Reconstruction (Section IVB)

This is the standard BAO reconstruction algorithm proposed in [8]: Objects in clustered and random catalogs are
displaced by the large-scale negative Zeldovich displacement field s, and the di↵erence between the corresponding
‘displaced’ and ‘shifted ’densities �d[s] and �s[s] gives the reconstructed density,
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2. LF2: Lagrangian F2 Reconstruction (Section IVC)

The LGS and LRR methods are combined such that the second order F
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3. LRR: Lagrangian Random-Random reconstruction (Section IVB)

This involves two oppositely shifted randoms: Randoms are shifted by the negative Zeldovich displacement, �s[s],
and by the positive Zeldovich displacement, �s[�s], and their mean is subtracted from the observed density,

�rec
LRR

= � � 1

2
{�s[s] + �s[�s]} . (59)

The result agrees with the linear density at first order and suppresses the nonlinear growth and shift term at
second order.

As explained before, the 2LPT model for the reconstructed density of each Eulerian algorithm agrees with the
corresponding Lagrangian-reconstructed density, although the algorithms are operationally very di↵erent. All recon-
struction algorithms leave the power spectrum unchanged on the very largest scales and reverse nonlinearities on
smaller scales in di↵erent ways.

VI. SIMULATIONS

To test the performance of the above reconstruction algorithms, we ran several N-body simulations with the
FastPM code [28], derived from the parallel COLA [29] implementation of [13, 30]. This is a particle-mesh (PM)
code that uses linear time stepping in the scaling factor a to produce accurate large scale structure at a fraction of
the total computing time of a typical TreePM N-body simulation. We set up 2LPT initial conditions for 20483 DM
particles in a box of length L = 1380Mpc/h per side and evolve them from the initial redshift zi = 99 to present
time with 80 time steps. From z = 99 to z = 1 we use a 40963 PM grid; at z < 1 we switch to a 61443 PM grid.
We only use a single snapshot at z = 0.55, which is taken after 52 time steps. We run three independent realizations
by generating Gaussian random fields following an initial DM power spectrum. For each realization we also run a
nowiggle simulation that has the same phases but is obtained from a nowiggle power spectrum where BAO wiggles are
smoothed out. The cosmic variance caused by broadband fluctuations can thus be cancelled when comparing wiggle
and nowiggle simulations [31, 32]. We assume a flat ⇤CDM cosmology with ⌦m = 0.272, h = 0.702,�
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= 0.807 for
the N-body simulations. The convergence of the simulations is discussed in Appendix D 1.

For all plots that do not require wiggle and nowiggle simulations, we instead use ‘RunPB’ N-body simulations
produced by Martin White with the TreePM N-body code of [33]. These simulations were also used in [24, 34, 35].
They have 10 realizations of 20483 DM particles in a box with side length L = 1380Mpc/h, and were started with 2LPT
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TABLE I. Overview of the reconstruction algorithms considered in this paper. Lagrangian reconstructions involve displacements
of objects which is not the case for Eulerian reconstructions. Methods in the same row agree at second order LPT. The standard
BAO reconstruction algorithm is called Lagrangian growth-shift reconstruction and listed on the upper right.

1. LGS: Lagrangian Growth-Shift Reconstruction (Section IVB)

This is the standard BAO reconstruction algorithm proposed in [8]: Objects in clustered and random catalogs are
displaced by the large-scale negative Zeldovich displacement field s, and the di↵erence between the corresponding
‘displaced’ and ‘shifted ’densities �d[s] and �s[s] gives the reconstructed density,
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2. LF2: Lagrangian F2 Reconstruction (Section IVC)

The LGS and LRR methods are combined such that the second order F
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3. LRR: Lagrangian Random-Random reconstruction (Section IVB)

This involves two oppositely shifted randoms: Randoms are shifted by the negative Zeldovich displacement, �s[s],
and by the positive Zeldovich displacement, �s[�s], and their mean is subtracted from the observed density,
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The result agrees with the linear density at first order and suppresses the nonlinear growth and shift term at
second order.

As explained before, the 2LPT model for the reconstructed density of each Eulerian algorithm agrees with the
corresponding Lagrangian-reconstructed density, although the algorithms are operationally very di↵erent. All recon-
struction algorithms leave the power spectrum unchanged on the very largest scales and reverse nonlinearities on
smaller scales in di↵erent ways.

VI. SIMULATIONS

To test the performance of the above reconstruction algorithms, we ran several N-body simulations with the
FastPM code [28], derived from the parallel COLA [29] implementation of [13, 30]. This is a particle-mesh (PM)
code that uses linear time stepping in the scaling factor a to produce accurate large scale structure at a fraction of
the total computing time of a typical TreePM N-body simulation. We set up 2LPT initial conditions for 20483 DM
particles in a box of length L = 1380Mpc/h per side and evolve them from the initial redshift zi = 99 to present
time with 80 time steps. From z = 99 to z = 1 we use a 40963 PM grid; at z < 1 we switch to a 61443 PM grid.
We only use a single snapshot at z = 0.55, which is taken after 52 time steps. We run three independent realizations
by generating Gaussian random fields following an initial DM power spectrum. For each realization we also run a
nowiggle simulation that has the same phases but is obtained from a nowiggle power spectrum where BAO wiggles are
smoothed out. The cosmic variance caused by broadband fluctuations can thus be cancelled when comparing wiggle
and nowiggle simulations [31, 32]. We assume a flat ⇤CDM cosmology with ⌦m = 0.272, h = 0.702,�
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= 0.807 for
the N-body simulations. The convergence of the simulations is discussed in Appendix D 1.

For all plots that do not require wiggle and nowiggle simulations, we instead use ‘RunPB’ N-body simulations
produced by Martin White with the TreePM N-body code of [33]. These simulations were also used in [24, 34, 35].
They have 10 realizations of 20483 DM particles in a box with side length L = 1380Mpc/h, and were started with 2LPT
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1. LGS: Lagrangian Growth-Shift Reconstruction (Section IVB)

This is the standard BAO reconstruction algorithm proposed in [8]: Objects in clustered and random catalogs are
displaced by the large-scale negative Zeldovich displacement field s, and the di↵erence between the corresponding
‘displaced’ and ‘shifted ’densities �d[s] and �s[s] gives the reconstructed density,
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2. LF2: Lagrangian F2 Reconstruction (Section IVC)
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3. LRR: Lagrangian Random-Random reconstruction (Section IVB)

This involves two oppositely shifted randoms: Randoms are shifted by the negative Zeldovich displacement, �s[s],
and by the positive Zeldovich displacement, �s[�s], and their mean is subtracted from the observed density,
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The result agrees with the linear density at first order and suppresses the nonlinear growth and shift term at
second order.

As explained before, the 2LPT model for the reconstructed density of each Eulerian algorithm agrees with the
corresponding Lagrangian-reconstructed density, although the algorithms are operationally very di↵erent. All recon-
struction algorithms leave the power spectrum unchanged on the very largest scales and reverse nonlinearities on
smaller scales in di↵erent ways.

VI. SIMULATIONS

To test the performance of the above reconstruction algorithms, we ran several N-body simulations with the
FastPM code [28], derived from the parallel COLA [29] implementation of [13, 30]. This is a particle-mesh (PM)
code that uses linear time stepping in the scaling factor a to produce accurate large scale structure at a fraction of
the total computing time of a typical TreePM N-body simulation. We set up 2LPT initial conditions for 20483 DM
particles in a box of length L = 1380Mpc/h per side and evolve them from the initial redshift zi = 99 to present
time with 80 time steps. From z = 99 to z = 1 we use a 40963 PM grid; at z < 1 we switch to a 61443 PM grid.
We only use a single snapshot at z = 0.55, which is taken after 52 time steps. We run three independent realizations
by generating Gaussian random fields following an initial DM power spectrum. For each realization we also run a
nowiggle simulation that has the same phases but is obtained from a nowiggle power spectrum where BAO wiggles are
smoothed out. The cosmic variance caused by broadband fluctuations can thus be cancelled when comparing wiggle
and nowiggle simulations [31, 32]. We assume a flat ⇤CDM cosmology with ⌦m = 0.272, h = 0.702,�

8

= 0.807 for
the N-body simulations. The convergence of the simulations is discussed in Appendix D 1.

For all plots that do not require wiggle and nowiggle simulations, we instead use ‘RunPB’ N-body simulations
produced by Martin White with the TreePM N-body code of [33]. These simulations were also used in [24, 34, 35].
They have 10 realizations of 20483 DM particles in a box with side length L = 1380Mpc/h, and were started with 2LPT
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Eulerian Lagrangian
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(x) = �(x)� �R(x)�(x)� s(x) ·r�(x) �rec
LGS

= �d[s]� �s[s]

Full F2 �rec
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�R(x)�(x)� s(x)r�(x)� 4
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�rec
LGS

+ 4

7

�rec
LRR

Random-Random �rec
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RR(x) �rec
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= � � 1
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{�s[s] + �s[�s]}

TABLE I. Overview of the reconstruction algorithms considered in this paper. Lagrangian reconstructions involve displacements
of objects which is not the case for Eulerian reconstructions. Methods in the same row agree at second order LPT. The standard
BAO reconstruction algorithm is called Lagrangian growth-shift reconstruction and listed on the upper right.

1. LGS: Lagrangian Growth-Shift Reconstruction (Section IVB)

This is the standard BAO reconstruction algorithm proposed in [8]: Objects in clustered and random catalogs are
displaced by the large-scale negative Zeldovich displacement field s, and the di↵erence between the corresponding
‘displaced’ and ‘shifted ’densities �d[s] and �s[s] gives the reconstructed density,

�rec
LGS

= �d[s]� �s[s]. (57)

2. LF2: Lagrangian F2 Reconstruction (Section IVC)

The LGS and LRR methods are combined such that the second order F
2

part of the unreconstructed density is
subtracted on large scales,
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⌘ 3

7
�rec
LGS

+
4

7
�rec
LRR

. (58)

3. LRR: Lagrangian Random-Random reconstruction (Section IVB)

This involves two oppositely shifted randoms: Randoms are shifted by the negative Zeldovich displacement, �s[s],
and by the positive Zeldovich displacement, �s[�s], and their mean is subtracted from the observed density,

�rec
LRR

= � � 1

2
{�s[s] + �s[�s]} . (59)

The result agrees with the linear density at first order and suppresses the nonlinear growth and shift term at
second order.

As explained before, the 2LPT model for the reconstructed density of each Eulerian algorithm agrees with the
corresponding Lagrangian-reconstructed density, although the algorithms are operationally very di↵erent. All recon-
struction algorithms leave the power spectrum unchanged on the very largest scales and reverse nonlinearities on
smaller scales in di↵erent ways.

VI. SIMULATIONS

To test the performance of the above reconstruction algorithms, we ran several N-body simulations with the
FastPM code [28], derived from the parallel COLA [29] implementation of [13, 30]. This is a particle-mesh (PM)
code that uses linear time stepping in the scaling factor a to produce accurate large scale structure at a fraction of
the total computing time of a typical TreePM N-body simulation. We set up 2LPT initial conditions for 20483 DM
particles in a box of length L = 1380Mpc/h per side and evolve them from the initial redshift zi = 99 to present
time with 80 time steps. From z = 99 to z = 1 we use a 40963 PM grid; at z < 1 we switch to a 61443 PM grid.
We only use a single snapshot at z = 0.55, which is taken after 52 time steps. We run three independent realizations
by generating Gaussian random fields following an initial DM power spectrum. For each realization we also run a
nowiggle simulation that has the same phases but is obtained from a nowiggle power spectrum where BAO wiggles are
smoothed out. The cosmic variance caused by broadband fluctuations can thus be cancelled when comparing wiggle
and nowiggle simulations [31, 32]. We assume a flat ⇤CDM cosmology with ⌦m = 0.272, h = 0.702,�

8

= 0.807 for
the N-body simulations. The convergence of the simulations is discussed in Appendix D 1.

For all plots that do not require wiggle and nowiggle simulations, we instead use ‘RunPB’ N-body simulations
produced by Martin White with the TreePM N-body code of [33]. These simulations were also used in [24, 34, 35].
They have 10 realizations of 20483 DM particles in a box with side length L = 1380Mpc/h, and were started with 2LPT

Eulerian Lagrangian

Equivalent in 2LPT*

* If displaced clustered catalogs are modelled such that displacement field is 
evaluated at Eulerian, not Lagrangian position, i.e. s[x] instead of s[q].
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2D slice plots 
Density change due to reconstruction, δ - δrec
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26

FIG. 10. Comparison of Lagrangian (top) and Eulerian (bottom) reconstructions at the field level for growth-shift (left), random-
random (middle) and F2 (right) algorithms. The panels show 2D slices of excess densities � � �rec that are removed from the
density when performing reconstruction. The excess densities in the bottom panels are quadratic in the nonlinear density
measured from simulations. They coincide with the excess densities expected from modeling the Lagrangian reconstructions
in the upper panels with 2LPT, if the linear densities in Eqs. (46), (48) and (53) are replaced by the nonlinear ones. For LRR
and ERR, twice the excess density is shown to enhance color contrast. We use R = 15h�1Mpc Gaussian smoothing for the
reconstructions. To highlight large scales, each final field is additionally smoothed externally with a R = 15h�1Mpc Gaussian.
The clustered catalog is obtained from a 1% random subsample of one RunPB N-body realization; the random catalog from
equally many randomly distributed particles.

FIG. 11. Left panel: Nonlinear density before reconstruction (divided by 3 for better visibility). Middle panels: Individual
growth and shift contributions to the Eulerian growth-shift reconstruction. Right panel: Expected excess density for growth-
shift reconstruction if the correction term (b) in Eq. (A9) is ignored. The plot shows term (a) given by Eq. (A27) (multiplied
by -1). All densities were obtained from the same 1% subsample as in Fig. 10 and are plotted in the same way.

Eulerian growth-shift (EGS)

26

FIG. 10. Comparison of Lagrangian (top) and Eulerian (bottom) reconstructions at the field level for growth-shift (left), random-
random (middle) and F2 (right) algorithms. The panels show 2D slices of excess densities � � �rec that are removed from the
density when performing reconstruction. The excess densities in the bottom panels are quadratic in the nonlinear density
measured from simulations. They coincide with the excess densities expected from modeling the Lagrangian reconstructions
in the upper panels with 2LPT, if the linear densities in Eqs. (46), (48) and (53) are replaced by the nonlinear ones. For LRR
and ERR, twice the excess density is shown to enhance color contrast. We use R = 15h�1Mpc Gaussian smoothing for the
reconstructions. To highlight large scales, each final field is additionally smoothed externally with a R = 15h�1Mpc Gaussian.
The clustered catalog is obtained from a 1% random subsample of one RunPB N-body realization; the random catalog from
equally many randomly distributed particles.

FIG. 11. Left panel: Nonlinear density before reconstruction (divided by 3 for better visibility). Middle panels: Individual
growth and shift contributions to the Eulerian growth-shift reconstruction. Right panel: Expected excess density for growth-
shift reconstruction if the correction term (b) in Eq. (A9) is ignored. The plot shows term (a) given by Eq. (A27) (multiplied
by -1). All densities were obtained from the same 1% subsample as in Fig. 10 and are plotted in the same way.
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FIG. 10. Comparison of Lagrangian (top) and Eulerian (bottom) reconstructions at the field level for growth-shift (left), random-
random (middle) and F2 (right) algorithms. The panels show 2D slices of excess densities � � �rec that are removed from the
density when performing reconstruction. The excess densities in the bottom panels are quadratic in the nonlinear density
measured from simulations. They coincide with the excess densities expected from modeling the Lagrangian reconstructions
in the upper panels with 2LPT, if the linear densities in Eqs. (46), (48) and (53) are replaced by the nonlinear ones. For LRR
and ERR, twice the excess density is shown to enhance color contrast. We use R = 15h�1Mpc Gaussian smoothing for the
reconstructions. To highlight large scales, each final field is additionally smoothed externally with a R = 15h�1Mpc Gaussian.
The clustered catalog is obtained from a 1% random subsample of one RunPB N-body realization; the random catalog from
equally many randomly distributed particles.

FIG. 11. Left panel: Nonlinear density before reconstruction (divided by 3 for better visibility). Middle panels: Individual
growth and shift contributions to the Eulerian growth-shift reconstruction. Right panel: Expected excess density for growth-
shift reconstruction if the correction term (b) in Eq. (A9) is ignored. The plot shows term (a) given by Eq. (A27) (multiplied
by -1). All densities were obtained from the same 1% subsample as in Fig. 10 and are plotted in the same way.

Lagrangian growth-shift (LGS)
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FIG. 10. Comparison of Lagrangian (top) and Eulerian (bottom) reconstructions at the field level for growth-shift (left), random-
random (middle) and F2 (right) algorithms. The panels show 2D slices of excess densities � � �rec that are removed from the
density when performing reconstruction. The excess densities in the bottom panels are quadratic in the nonlinear density
measured from simulations. They coincide with the excess densities expected from modeling the Lagrangian reconstructions
in the upper panels with 2LPT, if the linear densities in Eqs. (46), (48) and (53) are replaced by the nonlinear ones. For LRR
and ERR, twice the excess density is shown to enhance color contrast. We use R = 15h�1Mpc Gaussian smoothing for the
reconstructions. To highlight large scales, each final field is additionally smoothed externally with a R = 15h�1Mpc Gaussian.
The clustered catalog is obtained from a 1% random subsample of one RunPB N-body realization; the random catalog from
equally many randomly distributed particles.

FIG. 11. Left panel: Nonlinear density before reconstruction (divided by 3 for better visibility). Middle panels: Individual
growth and shift contributions to the Eulerian growth-shift reconstruction. Right panel: Expected excess density for growth-
shift reconstruction if the correction term (b) in Eq. (A9) is ignored. The plot shows term (a) given by Eq. (A27) (multiplied
by -1). All densities were obtained from the same 1% subsample as in Fig. 10 and are plotted in the same way.



GROWTH-SHIFT ALGORITHMS

BAO signal: Fractional difference of power spectra between wiggle and nowiggle 
simulations, for Lagrangian and Eulerian growth-shift algorithms!

MS et al. 1508.06972!

No reconstruction
Perfect reconstruction

Eulerian growth-shift

Lagrangian growth-shift



GROWTH-SHIFT ALGORITHMS

Cumulative BAO signal-to-noise-squared:  
Eulerian algorithm yields 95% of BAO S/N of standard Lagrangian algorithm

MS et al. 1508.06972!

No reconstruction

Perfect reconstruction

Eulerian growth-shift

Lagrangian growth-shift
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GROWTH-SHIFT ALGORITHMS

3-point vs 4-point:  Split δrec = δ + (δrec-δ) in simulations

MS et al. 1508.06972!

) h�rec|�reci = h�|�i|{z}
2pt

+2 h(�rec � �)|�i| {z }
3pt

+ h(�rec � �)|(�rec � �)i| {z }
4pt

.



GROWTH-SHIFT ALGORITHMS

3-point vs 4-point:  Split δrec = δ + (δrec-δ) in simulations

MS et al. 1508.06972!

) h�rec|�reci = h�|�i|{z}
2pt

+2 h(�rec � �)|�i| {z }
3pt

+ h(�rec � �)|(�rec � �)i| {z }
4pt

.

➡ 3-point much more important than 4-point



GROWTH-SHIFT ALGORITHMS

13 vs 22 part (of 3-point):  Split δ = δ0 + (δ-δ0) in simulations, where δ0 = linear density

MS et al. 1508.06972!

) h(�rec � �)|�i = h(�rec � �)|�0i| {z }
⇠h�(3)�0i

+ h(�rec � �)|(� � �0)i| {z }
⇠h�(2)�(2)i



GROWTH-SHIFT ALGORITHMS

13 vs 22 part (of 3-point):  Split δ = δ0 + (δ-δ0) in simulations, where δ0 = linear density

MS et al. 1508.06972!

➡ 13 part of 3-point sharpens BAO peaks,  

22-part shifts and damps them  

(see also Padmanabhan et al 2009)

) h(�rec � �)|�i = h(�rec � �)|�0i| {z }
⇠h�(3)�0i

+ h(�rec � �)|(� � �0)i| {z }
⇠h�(2)�(2)i



GROWTH-SHIFT ALGORITHMS

Growth vs shift part

MS et al. 1508.06972!



GROWTH-SHIFT ALGORITHMS

Growth vs shift part

MS et al. 1508.06972!

➡ Shift part most important,  

but growth also crucial
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ALL ALGORITHMS

Performance comparison!
EGS algorithm yields 95% of BAO S/N of standard Lagrangian LGS algorithm!
EF2 algorithm similar, other algorithms significantly worse

MS et al. 1508.06972!



DISCUSSION

Pros & Cons
MS et al. 1508.06972!

Lagrangian


reconstructions

- Less transparent where BAO info 
comes from!

- Data transformation very 
dependent on fiducial model!

- Justification of algorithm mostly a 
posteriori  
!

+ Slightly better performance!

+ Well established (10 yr old), applied 
to observations 

Eulerian


reconstructions

+ BAO info comes from specific 3- & 
4-point!

+ Data transformations less 
dependent on fiducial model!

+ Derived from nonperturbative 
continuity equation (EGS) or 
Newton-Raphson (EF2)!

- Slightly worse performance!

- Not worked out in redshift space



DISCUSSION

Pros & Cons
MS et al. 1508.06972!

Lagrangian


reconstructions

- Less transparent where BAO info 
comes from!

- Data transformation very 
dependent on fiducial model!

- Justification of algorithm mostly a 
posteriori  
!

+ Slightly better performance!

+ Well established (10 yr old), applied 
to observations 

Eulerian


reconstructions

+ BAO info comes from specific 3- & 
4-point!

+ Data transformations less 
dependent on fiducial model!

+ Derived from nonperturbative 
continuity equation (EGS) or 
Newton-Raphson (EF2)!

- Slightly worse performance!

- Not worked out in redshift space

Equivalent in 2LPT!
!
➡ Reconstructions are connected!

➡ New argument for success and 
robustness of standard reconstruction: 
implicitly includes 3- and 4-point!

➡ Intuitively, expect little new BAO 
information in 3-point statistics, 
because rec. moves it into 2-point
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CONCLUSIONS

Simple bispectrum estimators!
Three cross-spectra of quadratic fields with the density measure 
projection of full bispectrum on tree-level shape!
Simple, fast, nearly-optimal, simpler covariances!
Works well in simulations!
Extension to redshift space under development!

!
Eulerian BAO reconstruction and higher N-point statistics!

Presented 5 new BAO reconstruction algorithms!
Showed connection to 3- & 4-point of unreconstructed density!
Connected various algorithms to each other via 2LPT modelling!
Standard algorithm performs best, but two Eulerian algorithms are 
almost as well, achieving ~95% BAO S/N of standard method!

MS et al. 1508.06972!

MS, Baldauf, Seljak 
1411.6595!



Thank you
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FIG. 1. Theory contributions (67) to halo-halo-halo cross-spectra scaling like b3
1

(dashed), b2
1

b
2

(dash-dotted) and b2
1

bs2 (dotted)
for squared density �2

h

(x) (blue), shift term� i
h

(x)@i�
h

(x) (red) and tidal term s2
h

(x) (green), evaluated for fixed bias parameters
b
1

= 1, b
2

= 0.5 and bs2 = 2, Gaussian smoothing with RG = 20h�1Mpc, at z = 0.55, with linear matter power spectra in
integrands. Thin gray lines show the large-scale (low k) limit given by Eq. (70). The cross-spectra are divided by the partially

smoothed FrankenEmu emulator matter power spectrum W 3/2
R P emu

mm

[45–48] for plotting convenience.

E. Halo-halo-halo cross-spectra

The halo-halo-halo bispectrum (28) gives for the halo-halo-halo cross-spectra

PD[�R
h

],�R
h

(k) = 2b3

1

h
IR
DF

2

(k) + 2Ibare,R
DF

2

(k)
i
+ 2b2

1

b
2

h
IR
DP

0

(k) + 2Ibare,R
DP

0

(k)
i
+

4

3
b2

1

bs2

h
IR
DP

2

(k) + 2Ibare,R
DP

2

(k)
i
. (67)

Contributions depending on b3

1

also appear in matter-matter-halo cross spectra, so that
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Decomposing the F
2

kernel in Legendre polynomials as in Eq. (18), Eq. (67) can be rewritten as
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The contributions to the theory expression of Eq. (67) are shown in Fig. 1 for Gaussian smoothing with R =
20h�1Mpc (see Fig. 10 in the appendix for R = 10h�1Mpc). Di↵erent colors describe di↵erent cross-spectra,
D 2 {P

0

, �F 1

2

P
1

,P
2

}, while di↵erent line styles correspond to the contributions with di↵erent dependencies on

THEORY CONTRIBUTIONS



VERY LARGE SCALES

Large scale limit (k→0) of cross-spectrum expectation values:

MS, Baldauf, Seljak, 1411.6595 
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and

WR(|k � q|) = WR(q)


1 � k⌫

q

d ln WR(q)

d ln q

�
. (A12)

For Gaussian smoothing this becomes

WRG(|k � q|) = WRG(q)


1 +

k⌫

q
(qR)2

�
. (A13)

Keeping only terms of order (k/q)0 for the final results from now on we get from Eqs. (A7), (A8), (A11) and (A12)
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where
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The limits of the bare integrals (63) for E = F
2

follow from Eqs. (A10) and (A12) by noting that only P2

0

(⌫)
and P2

1

(⌫) survive the ⌫ integration over the product of Eqs. (A10) and (A12) because of Legendre polynomial
orthogonality:
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For Gaussian smoothing, �d ln WR(q)/d ln q = (qR)2, so no numerical derivatives are required to evaluate Eq. (A19).
To gain intuition, Eq. (A19) can be integrated by parts to get �2
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Then, Eq. (A17) becomes for D 2 {P
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The integrand contains the linear response of the power spectrum to a long-wavelength overdensity (e.g. [17, 33, 58]).
In contrast, the large-scale limit of the quantity proposed in [17] is (by construction) proportional to the response
function on large scales rather than integrating over it.

For E = P
0

, only the P
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(⌫) part of Eq. (A12) survives the ⌫-integration so that
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For E = P
2

, the integrand of Eq. (63) contains P
2

(⌫) multiplied by P
0

(⌫) and P
1

(⌫) from Eq. (A12), which vanishes
upon angular integration because of Legendre polynomial orthogonality, i.e.
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Note that for our fiducial cosmology, at z = 0.55, for Gaussian smoothing with R = 20h�1Mpc using the linear
matter power spectrum in integrands, we get �2

R = 0.0215, �2

R,P 0 = 0.0464 and ⌧4

R = 191.9h�3Mpc3. Using emulator

instead of linear matter power gives �2

R = 0.0213, �2

R,P 0 = 0.0460 and ⌧4

R = 189.2h�3Mpc3.
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2
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R,P 0 , where
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Then, Eq. (A17) becomes for D 2 {P
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The integrand contains the linear response of the power spectrum to a long-wavelength overdensity (e.g. [17, 33, 58]).
In contrast, the large-scale limit of the quantity proposed in [17] is (by construction) proportional to the response
function on large scales rather than integrating over it.

For E = P
0

, only the P
0

(⌫) part of Eq. (A12) survives the ⌫-integration so that
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For E = P
2

, the integrand of Eq. (63) contains P
2

(⌫) multiplied by P
0

(⌫) and P
1

(⌫) from Eq. (A12), which vanishes
upon angular integration because of Legendre polynomial orthogonality, i.e.
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Note that for our fiducial cosmology, at z = 0.55, for Gaussian smoothing with R = 20h�1Mpc using the linear
matter power spectrum in integrands, we get �2

R = 0.0215, �2

R,P 0 = 0.0464 and ⌧4

R = 191.9h�3Mpc3. Using emulator

instead of linear matter power gives �2

R = 0.0213, �2

R,P 0 = 0.0460 and ⌧4

R = 189.2h�3Mpc3.
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and

WR(|k � q|) = WR(q)


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�
. (A12)

For Gaussian smoothing this becomes

WRG(|k � q|) = WRG(q)


1 +
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q
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�
. (A13)

Keeping only terms of order (k/q)0 for the final results from now on we get from Eqs. (A7), (A8), (A11) and (A12)
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where
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The limits of the bare integrals (63) for E = F
2

follow from Eqs. (A10) and (A12) by noting that only P2

0

(⌫)
and P2

1

(⌫) survive the ⌫ integration over the product of Eqs. (A10) and (A12) because of Legendre polynomial
orthogonality:
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For Gaussian smoothing, �d ln WR(q)/d ln q = (qR)2, so no numerical derivatives are required to evaluate Eq. (A19).
To gain intuition, Eq. (A19) can be integrated by parts to get �2
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The integrand contains the linear response of the power spectrum to a long-wavelength overdensity (e.g. [17, 33, 58]).
In contrast, the large-scale limit of the quantity proposed in [17] is (by construction) proportional to the response
function on large scales rather than integrating over it.

For E = P
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, only the P
0

(⌫) part of Eq. (A12) survives the ⌫-integration so that
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For E = P
2

, the integrand of Eq. (63) contains P
2
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upon angular integration because of Legendre polynomial orthogonality, i.e.
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Note that for our fiducial cosmology, at z = 0.55, for Gaussian smoothing with R = 20h�1Mpc using the linear
matter power spectrum in integrands, we get �2

R = 0.0215, �2

R,P 0 = 0.0464 and ⌧4

R = 191.9h�3Mpc3. Using emulator

instead of linear matter power gives �2

R = 0.0213, �2

R,P 0 = 0.0460 and ⌧4

R = 189.2h�3Mpc3.
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for D 2 {P
0

, �F 1
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P
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,P
2

} with the density �R
b is given by an integral over the bispectrum B,

hD[�R
a ](k)�R

b (k0)i =

Z
d3q

(2⇡)3
D(q,k � q)h�R

a (q)�R
a (k � q)�R

b (k0)i (57)

= (2⇡)3�D(k + k

0)

Z
d3q

(2⇡)3
D(q,k � q)B�R

a �R
a �R

b
(q,k � q, �k). (58)

For a 6= b, the bispectrum B is not symmetric in its arguments and the last argument �k is associated with �b.
Writing the smoothing kernels explicitly, we have

PD[�R
a ],�R

b
(k) = WR(k)

Z
d3q

(2⇡)3
WR(q)WR(|k � q|)D(q,k � q)B�a�a�b(q,k � q, �k). (59)

C. Matter-matter-matter cross-spectra

For cross-spectra of smoothed dark matter fields (a = b = m), the DM bispectrum (16) gives
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Z
d3q
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(q,k � q, �k) (60)

= 2IR
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(k) + 4Ibare,R
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(k), (61)

where we used that the kernel D(q,k� q) is assumed to be symmetric in its arguments and we defined for kernels D
and E
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which is symmetric under D $ E, and
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which is not symmetric under D $ E. Explicit predictions for the cross-spectra P�2

m

,�
m

, P� i
m

@i�m

,�
m

and Ps2

m

,�
m

can
be obtained from Eq. (61) by plugging in D = P

0

, D = �F 1

2

P
1

and D = P
2

, respectively, and setting E = F
2

. Note
that there are three powers of the smoothing kernel because we smooth the nonlinear rather than the linear field.

The integrals in Eqs. (62) and (63) are similar to typical 1-loop expressions and can be reduced to two-dimensional
integrals over scale q and cosine q̂·k̂, which can be evaluated numerically with little computational cost (see e.g. [43, 44]
for public codes that compute similar integrals). The factors WR(|k � q|) and P lin

mm

(|k � q|) introduce a non-trivial
angle dependence so that the angular integration generally needs to be performed numerically.

The only ingredient for the theory prediction of Eq. (61) is the model for the DM bispectrum. Improved bispectrum
models that have the same form as Eq. (16) could easily be included, e.g. by replacing the perturbation theory F

2

kernel by an e↵ective F
2

kernel fitted to N -body simulations [12, 36, 37].

D. Matter-matter-halo cross-spectra

From the unsymmetric unsmoothed matter-matter-halo bispectrum of Eq. (24) we find for the cross-spectrum of a
quadratic matter field with the halo density
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The part depending on b
1

can be expressed in terms of the matter-matter-matter cross-spectrum so that

PD[�R
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bias parameters, scaling like b3

1

, b2

1

b
2

or b2

1

bs2 . The characteristic k-dependencies of the di↵erent contributions can be
exploited to fit b

1

, b
2

and bs2 to the three cross-spectra at the same time. In practice, the fitted bias parameters can
still be degenerate because sampling variance at low k and modeling uncertainty at high k limit the usable k range.
In particular, in the range 0.01h/Mpc . k . 0.1h/Mpc, every cross-spectrum depends rather similarly on b3

1

and b2

1

b
2

leading to a degeneracy where larger b
1

can be compensated by a smaller b
2

, which is also present when considering
individual bispectrum triangles rather than cross-spectra. Consequently, models that extend leading-order PT to
higher k are expected to improve bias constraints significantly.

In the large-scale limit, k ⌧ q, the three halo-halo-halo cross-spectra of Eq. (67) equal each other (see Appendix A
for details),
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where WR(k) ! 1 for k ! 0, and �2

R,P 0 and ⌧4

R are defined in Eqs. (A20) and (A16), respectively. In this limit,
the b3

1

term is proportional to the linear matter power spectrum, whereas the term involving b
2

scales like the linear
matter power spectrum plus a k-independent correction and the term involving bs2 is entirely k-independent (see
thin gray lines in Figs. 1 and 10 for the the ratio of these limits over the matter power spectrum). Due to large
sampling variance at low k, this scale-dependence is expected to be less powerful in distinguishing bias parameters
than constraints obtained from the di↵erent scale-dependencies at high k.

F. Shot noise

The bispectrum of the smoothed halo density has an additional stochasticity contribution,
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, k
3

), (71)

whose Poissonian prediction is (see e.g. [49])

BR,shot

hhh

(k
1

, k
2

, k
3

) = WR(k
1

)WR(k
2

)WR(k
3

)

⇢
1

n̄
h

[P
hh

(k
1

) + 2 perms] +
1

n̄2

h

�
. (72)

Here, n̄
h

is the mean halo number density, and P
hh

is the power spectrum of the unsmoothed continuous halo
density field, which we approximate by the ensemble-averaged, CIC- and shot-noise-corrected power spectrum of the
unsmoothed halo density measured in the simulations. The stochasticity bispectrum contributes to halo cross-spectra
as

P shot
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
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where we defined
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which depends on the mass bin through P
hh

. The full model is

hP̂D[�R
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],�R
h

(k)i = PD[�R
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],�R
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(k) + P shot

D[�R
h

],�R
h

(k), (76)

where the first term on the r.h.s. depends on bias parameters to be fitted from data, while the stochasticity (shot
noise) term does not explicitly depend on bias parameters because we use the measured ensemble-averaged halo power
spectrum there.

The Poisson stochasticity should be corrected for exclusion and clustering e↵ects, similarly to the power spectrum
results of [50]. Phenomenologically, we can model these shot noise corrections with two scale-independent parameters,
�

1

and �
2

, by adding �
1

[P
hh
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) + 2perms] to n̄�1
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in Eq. (72), so that
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For �
2

= �
1

/n̄
h

, this is equivalent to rescaling the Poisson shot noise by an overall scale-independent amplitude as
done in e.g. [12]. The Poisson prediction is recovered for �

1

= �
2

= 0.

Different from position-dependent power spectrum (Chiang et al. 2014):

where q1,3 refers to q1 and q3. Spherically averaging (k̂ · q̂3)2 over k yields 1/3, and thus
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(A.9)

Note that the O(q1,3/k) terms cancel in the angular average. The same relation has been
derived in [18–20, 33].
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GROWTH-SHIFT ALGORITHMS

2D slice plots: Components of EGS reconstruction 
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FIG. 10. Comparison of Lagrangian (top) and Eulerian (bottom) reconstructions at the field level for growth-shift (left), random-
random (middle) and F2 (right) algorithms. The panels show 2D slices of excess densities � � �rec that are removed from the
density when performing reconstruction. The excess densities in the bottom panels are quadratic in the nonlinear density
measured from simulations. They coincide with the excess densities expected from modeling the Lagrangian reconstructions
in the upper panels with 2LPT, if the linear densities in Eqs. (46), (48) and (53) are replaced by the nonlinear ones. For LRR
and ERR, twice the excess density is shown to enhance color contrast. We use R = 15h�1Mpc Gaussian smoothing for the
reconstructions. To highlight large scales, each final field is additionally smoothed externally with a R = 15h�1Mpc Gaussian.
The clustered catalog is obtained from a 1% random subsample of one RunPB N-body realization; the random catalog from
equally many randomly distributed particles.

FIG. 11. Left panel: Nonlinear density before reconstruction (divided by 3 for better visibility). Middle panels: Individual
growth and shift contributions to the Eulerian growth-shift reconstruction. Right panel: Expected excess density for growth-
shift reconstruction if the correction term (b) in Eq. (A9) is ignored. The plot shows term (a) given by Eq. (A27) (multiplied
by -1). All densities were obtained from the same 1% subsample as in Fig. 10 and are plotted in the same way.
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ALL ALGORITHMS

Performance comparison!
EGS algorithm yields 95% of BAO S/N of standard Lagrangian LGS algorithm!
EF2 algorithm similar, other algorithms significantly worse
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FIG. 9. Cumulative BAO signal-to-noise-squared for reconstructed power spectra as a function of k
max

measured from sim-
ulations for three Eulerian reconstruction algorithms (dashed colored) and the corresponding three Eulerian reconstruction
algorithms (solid colored). See Section V for a summary of the algorithms. The signal-to-noise-squared of the density before
reconstruction (black) and of the linear density (gray) are included for comparison.

Growth-Shift F2 reconstruction Random-Random

Reconstruction method LGS EGS LF2 EF2 LRR ERR Perfect NoRec

BAO signal-to-noise 14.2 13.6 12.7 13.3 11.1 11.3 17.0 10.3

Compared against LGS ±0% �4.7% �11% �6.3% �22% �21% +19% �27%

Compared against NoRec +38% +31% +23% +29% +6.9% +8.8% +64% ±0%

TABLE II. Total BAO signal-to-noise for k
max

= 0.4h/Mpc for various reconstruction algorithms (obtained from Fig. 9, based
on simulations). ‘Perfect’ refers to the BAO signal-to-noise of the linear density and ‘NoRec’ to the BAO signal-to-noise of
the measured nonlinear density without performing any reconstruction. The second-to-last row shows how much of the signal-
to-noise is lost compared to performing the standard LGS reconstruction. The bottom row shows how much signal-to-noise is
gained by reconstructions compared to performing no reconstruction.

The EGS and EF2 methods may be useful for applications because they perform almost as well as the standard LGS
algorithm and have potential advantages due to their Eulerian nature (e.g. they can be expressed as combinations of
2-, 3- and 4-point functions of the unreconstructed density). The LF2 method and the random-random methods are
not competitive in terms of signal-to-noise so they should not be used. The performance of ERR can be improved
by using asymmetric smoothing where only one of the fields entering quadratic fields is smoothed; in this case ERR
performs almost as well as EF2 but still slightly worse. For the LRR method it is less obvious how to reduce the
smoothing to improve it, and we do not investigate this further.

Our results are based on simulations and it is not clear how to explain them within the framework of second order
perturbation theory where all methods agree up to smoothing and should thus perform similarly well. The di↵erence
in performance could be attributed to di↵erent smoothing operations, e.g. theory expressions for the random-random
methods involve only the smoothed density, whereas theory expressions for the other reconstruction methods involve
also unsmoothed fields so that e.g. small-scale modes are shifted by large-scale smoothed displacements, which can
yield improved reconstructions. However this does not explain the (small) di↵erences between the LGS, EGS, LF2 and
EF2 algorithms. These could be due to higher order corrections in perturbation theory, which we have not included
in our modeling where the density was truncated at second order in the linear density. The fact that the 13 part of
the 3-point contribution to the reconstructed power spectrum seems to be most important in simulations (see Fig. 6)
suggests that third-order corrections could be responsible for the slightly di↵erent performances of the LGS, EGS,
LF2 and EF2 algorithms. We do not investigate the performance di↵erences of these algorithm in more detail here
because the LGS, EGS and EF2 algorithms perform almost equally well.



SMOOTHING SCALE

Dependence on smoothing scale
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FIG. 12. Cumulative BAO signal-to-noise for varying Gaussian smoothing scale R, using scales up to k
max

= 0.15h/Mpc (left)
or k

max

= 0.4h/Mpc (right). Note that the shot noise in our setup is unrealistically small, n̄�1 = 31Mpc3/h3.

Appendix D: Numerical Analysis Details

1. Simulation Convergence Tests

To check convergence of the FastPM simulations for the quantities and plots relevant to this paper, we perform
several convergence tests. First, we generate a single FastPM realization that matches the cosmology and phases of
the initial conditions of one of the TreePM RunPB simulations. We then measure all auto- and cross-spectra between
�, �2,  ·r� and K2, corresponding to 2-, 3- and 4-point statistics required for Eulerian reconstructions. All spectra
from FastPM are slightly lower than the corresponding TreePM RunPB spectra over the whole k range, and the
deviations are smallest at low k. The density power spectrum (2-point) is less than 0.8% low over the whole k range,
3-point spectra like h�2|�i di↵er by less than 1% at k  0.2h/Mpc and by at most 1.5% at higher k. 4-point spectra
like h�2|�2i di↵er by less than 1.5% at k  0.2h/Mpc and by at most 2% at higher k. This is true for full DM samples
as well as 1% subsamples (with the same particles selected from the RunPB and FastPM simulation). In summary,
FastPM simulations and TreePM RunPB simulations agree at the 2%-level.

Since BAO wiggles are only percent-level fluctuations on top of the broadband shape of the power spectrum, even
di↵erences at the 2% level could potentially be problematic for BAO studies. We expect however that broadband
systematic inaccuracies in the simulations should cancel out when forming di↵erences between wiggle and nowiggle
simulations, as long as these systematics are present in wiggle and nowiggle simulations, which is a reasonably
assumption. To test this more quantitatively we vary the accuracy settings of the FastPM code and check if any
results depend on them: First, we run the same simulations with only 20 time steps and starting redshift zi = 9
(instead of 80 time steps and zi = 99 used for the fiducial simulations). Second, we also run them with 80 time
steps and zi = 9. We generated every plot of this paper based on FastPM simulations for the three di↵erent accuracy
settings. All plots agree almost perfectly between the three settings, and changes are so small that they cannot
be seen by eye. Therefore, our results do not depend on the accuracy settings of the FastPM code. This provides
additional evidence that the simulations are converged for the purposes of this paper. For all plots that require
nowiggle simulations, we will only show plots for the fiducial FastPM simulations with 80 time steps and zi = 99
because they should be most accurate. For plots that do not require nowiggle simulations we use RunPB TreePM
simulations instead.

2. Dependence on Reconstruction Smoothing Scale

All numerical results in the main text assumed a fiducial Gaussian smoothing scale of R = 15Mpc/h for the
reconstruction algorithms, which was found to be optimal for the analysis in [10, 11]. Here we briefly discuss how our
results depend on this choice. Fig. 12 shows the cumulative BAO signal-to-noise for di↵erent smoothing scales R. For
k
max

= 0.15h/Mpc, Eulerian and Lagrangian reconstructions perform very similarly independent of smoothing scale,
which is expected because the 2LPT models of the algorithms agree. If smaller scales are included, k

max

= 0.4Mpc/h,
Eulerian and Lagrangian reconstructions still perform similarly for large smoothing scale, R & 15Mpc/h. In particular,


